精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=alnx-bx2
(Ⅰ)若函数f(x)在x=1处与直线$y=-\frac{1}{2}$相切,求函数$f(x)在[{\frac{1}{e},e}]$上的最大值.
(Ⅱ)当b=0时,若不等式f(x)≥m+x对所有的$a∈[{0,\frac{3}{2}}]$,x∈(1,e2]都成立,求实数m的取值范围.

分析 (Ⅰ)求出a,b的值,研究闭区间上的最值问题,先求出函数的极值,比较极值和端点处的函数值的大小,最后确定出最大值;
(Ⅱ)当b=0时,f(x)=alnx,已知条件转化为即m≤alnx-x对所有的a∈[0,$\frac{3}{2}$],x∈(1,e2]都成立,令h(a)=alnx-x,则h(a)为一次函数,则m≤h(a)min.由单调性求得最小值,即可得到m的范围.

解答 解:(Ⅰ)由题知f′(x)=$\frac{a}{x}$-2bx,
∵函数f(x)在x=1处与直线y=-$\frac{1}{2}$相切,
∴$\left\{\begin{array}{l}f'(1)=a-2b=0\\ f(1)=-b=-\frac{1}{2}\end{array}\right.$解得$\left\{\begin{array}{l}{a=1}\\{b=\frac{1}{2}}\end{array}\right.$,
∴$f(x)=lnx-\frac{1}{2}{x^2},f'(x)=\frac{1}{x}-x=\frac{{1-{x^2}}}{x}$,
当$\frac{1}{e}$≤x≤e时,令f′(x)>0得$\frac{1}{e}$<x<1;
令f′(x)<0,得1<x<e,
∴f(x)在($\frac{1}{e}$,1]上单调递增,在[1,e]上单调递减,
∴f(x)max=f(1)=-$\frac{1}{2}$;
(Ⅱ)当b=0时,f(x)=alnx,
若不等式f(x)≥m+x对所有的a∈[0,$\frac{3}{2}$],x∈(1,e2]都成立,
即m≤alnx-x对所有的a∈[0,$\frac{3}{2}$],x∈(1,e2]都成立,
令h(a)=alnx-x,则h(a)为一次函数,
∴m≤h(a)min
∵x∈(1,e2],∴lnx>0,∴h(a)在a∈[0,$\frac{3}{2}$]上单调递增,
∴h(a)min=h(0)=-x,∴m≤-x对所有的x∈(1,e2]都成立.
∵1<x<e2,∴-e2≤-x<-1,
∴m≤(-x)min=-e2
则实数m的取值范围为(-∞,-e2].

点评 本题考查导数的运用,不等式的恒成立问题转化为求函数的最值问题,注意运用单调性,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,a1=1,an+1=an+$\frac{1}{{2}^{n}}$,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数fk(x)=ax-(k-1)a-x(k∈Z,a>0,a≠1,x∈R),g(x)=$\frac{{f}_{2}(x)}{{f}_{0}(x)}$.
(1)若a>1时,判断并证明函数y=g(x)的单调性;
(2)若y=f1(x)在[1,2]上的最大值比最小大2,证明函数y=g(x)的奇函数;
(3)在(2)条件下,函数y=f0(2x)+2mf2(x)在x∈[1,+∞)有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-ln$\frac{1}{x}$.
(1)求函数f(x)在[$\frac{1}{e}$,e2]上的最大值和最小值;
(2)证明:当x∈(1,+∞)时,函数g(x)=$\frac{2}{3}$x3+$\frac{1}{2}$x2的图象在y=f(x)的图象上方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ln(x-1)-k(x-1)+1(k∈R)
(1)求f(x)的单调区间和极值;
(2)若f(x)≤0对定义域所有x恒成立,求k的取值范围;
(3)n≥2,n∈N时证明 ln2+ln3+…lnn≤$\frac{n(n-1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x-$\frac{2a-1}{x}$-2alnx(a∈R).
(1)若函数f(x)在x=$\frac{1}{2}$处取得极值,求实数a的值;
(2)若不等式f(x)≥0在[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$f(x)=\frac{lnx}{1+x}-lnx,f(x)$在x=x0处取最大值,以下结论:
①f(x0)<x0 ②f(x0)=x0 ③f(x0)>x0 ④$f({x_0})<\frac{1}{2}$   ⑤$f({x_0})>\frac{1}{2}$
其中正确的序号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列4个命题:
①在△ABC中,“cosA+sinA=cosB+sinB”是“A=B”的充要条件;
②b2=ac是a,b,c成等比数列的充要条件;
③若loga2<logb2<0,则a>b;
④若f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈($\frac{π}{4}$,$\frac{π}{2}$),则f(sinθ)>f(cosθ);  
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=tan($\frac{x}{3}$+$\frac{π}{4}$)的最小正周期为(  )
A.$\frac{π}{3}$B.C.$\frac{2π}{3}$D.

查看答案和解析>>

同步练习册答案