精英家教网 > 高中数学 > 题目详情
4.已知$f(x)=\frac{lnx}{1+x}-lnx,f(x)$在x=x0处取最大值,以下结论:
①f(x0)<x0 ②f(x0)=x0 ③f(x0)>x0 ④$f({x_0})<\frac{1}{2}$   ⑤$f({x_0})>\frac{1}{2}$
其中正确的序号为②④.

分析 求函数的定义域和函数的导数,研究函数单调性和极值,利用极值最值的关系确定f(x0)的值,进行判断即可.

解答 解:函数的定义域为(0,+∞),f(x)=(-$\frac{x}{x+1}$)lnx,
函数的导数f′(x)=(-$\frac{x}{x+1}$)′lnx-$\frac{x}{x+1}$•$\frac{1}{x}$=$\frac{-lnx-x-1}{{(x+1)}^{2}}$,
设h(x)=-lnx-x-1,
则h′(x)=-$\frac{1}{x}$-1=$\frac{-1-x}{x}$,则当x>0时,h′(x)<0,
即h(x)在(0,+∞)上为减函数,
∵h($\frac{1}{2}$)=ln2-$\frac{3}{2}$<lne-$\frac{3}{2}$=-$\frac{1}{2}$<0,当x→0时,h(x)>0,
∴在(0,$\frac{1}{2}$)内函数h(x)有唯一的零点x0,即h(x0)=-lnx0-x0-1=0,
即lnx0=-1-x0
当0<x<x0,f′(x)>0,
当x>x0,f′(x)<0,即函数f(x)在x=x0处取得最大值,
即f(x0)=(-$\frac{{x}_{0}}{{x}_{0}+1}$)•lnx0=(-$\frac{{x}_{0}}{{x}_{0}+1}$)•(-1-x0)=x0
故答案为:②④.

点评 本题主要考查命题的真假判断涉及函数的单调性,极值,最值与导数之间的关系,综合性较强,运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.实数在数轴上对应的点如图所示:
化简:|a|-|a+b|+|a+c|+|c-b|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=alnx-\frac{x}{2}$在x=2处取得极值.
(Ⅰ)求a实数的值;
(Ⅱ)当x>1时,$f(x)+\frac{k}{x}<0$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=alnx-bx2
(Ⅰ)若函数f(x)在x=1处与直线$y=-\frac{1}{2}$相切,求函数$f(x)在[{\frac{1}{e},e}]$上的最大值.
(Ⅱ)当b=0时,若不等式f(x)≥m+x对所有的$a∈[{0,\frac{3}{2}}]$,x∈(1,e2]都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a≠0,函数f(x)=ax(x-1)2(x∈R)有极大值4.
(1)求实数a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为(  )
A.8+πB.8+2πC.8+3πD.8+4π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A、B,线段AB的中点为D,与直线l:y=kx+b平行的切线的切点为C.分别过A、B作抛物线的切线交于点E,则关于点C、D、E三点横坐标xc、xD,xE的表述正确的是(  )
A.xD<xC<xEB.xC=xD>xEC.xD=xc<xED.xC=xD=xE

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.学校对高二、高三年级的1000名男生的体重进行调查,设每个男生的体重为x公斤,调查所得数据用如图所示的程序框图处理,若输出的结果是380,则体重在60公斤(包括60公斤)以内的男生的频率是(  )
A.380B.620C.$\frac{19}{50}$D.$\frac{31}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在下列命题中,真命题是(1)(2)(写出所有真命题的序号)
(1)互为反函数的两个函数的单调性相同;
(2)y=f(x)图象与y=-f(-x)的图象关于原点对称;
(3)奇函数f(x)必有反函数f-1(x).

查看答案和解析>>

同步练习册答案