精英家教网 > 高中数学 > 题目详情
10.在△ABC中,A=60°,AB=2,且△ABC的面积为2$\sqrt{3}$,则BC边的长为(  )
A.$\sqrt{7}$B.2$\sqrt{3}$C.3$\sqrt{7}$D.7

分析 利用三角形的面积求出AC,然后利用余弦定理求解即可.

解答 解:在△ABC中,A=60°,AB=2,且△ABC的面积为2$\sqrt{3}$,
可得$\frac{1}{2}AB•ACsinA=\frac{1}{2}×2×AC×\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
解得AC=4.
由余弦定理可得:BC=$\sqrt{{AB}^{2}+{AC}^{2}-2AB•ACcos60°}$=$\sqrt{4+16-2×4×2×\frac{1}{2}}$=$\sqrt{12}$=2$\sqrt{3}$.
故选:B.

点评 本题考查余弦定理以及三角形的面积的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.①在△ABC中,若sinA>sinB,则A>B;
②若满足条件C=60°,AB=$\sqrt{3}$,BC=a的△ABC有两个,则$\sqrt{2}<a<\sqrt{3}$;
③在等比数列{an}中,若其前n项和Sn=3n+a,则实数a=-1;
④若等比数列{an}中a2和a10是方程x2+15x+16=0的两根,则a22+2a4a8+a102=225,且a6=±4.
其中正确的命题序号有①③(把你认为正确的命题序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=Asin(ωx+φ)(x∈R)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,则(  )
A.y=sin(x-$\frac{π}{6}$)B.y=sin(2x+$\frac{π}{3}$)C.y=-sin(2x+$\frac{π}{6}$)D.y=sin(2x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数y=x2+2ax与y=-$\frac{a}{x+1}$在区间[1,2]上都是y随x的增大而减小,则实数a的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知AB是抛物线x2=2py(p>0)的焦点弦(焦点弦是指椭圆或者双曲线或者抛物线上经过一个焦点的弦),F为抛物线的焦点,A(x1,y1),B(x2,y2).求证:
(1)x1x2=-p2,y1y2=$\frac{{p}^{2}}{4}$;
(2)AB=y1+y2+p;
(3)$\frac{1}{AF}$+$\frac{1}{BF}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解下列二元二次方程组:$\left\{\begin{array}{l}{x+y+\frac{16}{x}+\frac{4}{y}=12}\\{({x}^{2}+16)({y}^{2}+4)=32xy}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+ax+1
(1)若函数在[-1,3]上的最大值为2,求a;
(2)若x∈(0,2)时,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.四棱锥P-ABCD的底面为矩形,且AB=4,BC=3,PD⊥底面ABCD,PD=5,则PB与底面所成角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.长方体ABCD-A1B1C1D1中,AB=4,AD=3,AA1=2$\sqrt{6}$,则AC1与BD所成角的余弦值为$\frac{1}{5}$.

查看答案和解析>>

同步练习册答案