精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos(x-
π
4
)
.先把y=f(x)的图象上所有点向左平移
π
4
个单位长度,再把所得图象上所有点的横坐标缩短到原来的
1
2
(纵坐标不变)得到函数y=g(x)的图象.
(1)写出函数g(x)的解析式;
(2)已知f(α)=
3
5
α∈(
π
2
2
)
,求f(2α)的值;
(3)设g1(x),g2(x)是定义域为R的两个函数,满足g2(x)=g1(x+θ),其中θ是常数,且θ∈[0,π].请设计一个函数y=g1(x),给出一个相应的θ值,使得g(x)=g1(x)•g2(x).并予以证明.
(1)g(x)=cos2x.…(2分)
(2)因为α-
π
4
∈(
π
4
4
)
cos(α-
π
4
)=
3
5
>0
,所以α-
π
4
∈(
π
4
π
2
)

所以sin(α-
π
4
)=
4
5
,…(4分)cos(2α-
π
2
)=2cos2(α-
π
4
)-1=-
7
25
,则sin2α=-
7
25
,…(5分)sin(2α-
π
2
)=2sin(α-
π
4
)cos(α-
π
4
)=
24
25
,则cos2α=-
24
25
,…(6分)
所以f(2α)=cos(2α-
π
4
)=cos2αcos
π
4
+sin2αsin
π
4
=-
31
50
2
.…(7分)
(3)令g1(x)=cosx+sinx,θ=
π
2
,…(9分)
则g1(x)•g2(x)=(cosx+sinx)(-sinx+cosx)=cos2x-sin2x=cos2x…(10分)
(注:令g1(x)=
2
cos(x-
π
4
)
θ=
π
2
g1(x)=1+
2
sinx
,θ=π等相应给分.)(只构造不证明本小问不得分.)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1

(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C、的对边分别为a、b、c,且c=
3
,f(C)=0,若向量
m
=(1, sinA)
与向量
n
=(2,sinB)
共线,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知函数f(x)=
1,x>0
0,x=0
-1,x<0
,设F(x)=x2•f(x),则F(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x-1,x≤0
ln(x+1),x>0
,若|f(x)|≥ax,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(c-1)2x,(x≥1)
(4-c)x+3,(x<1)
的单调递增区间为(-∞,+∞),则实数c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-ax+5,x<1
1+
1
x
,x≥1
在定义域R上单调,则实数a的取值范围为(  )

查看答案和解析>>

同步练习册答案