【题目】若对任意
,恒有
,则实数
的最小值为( )
A.
B.
C.
D.![]()
【答案】D
【解析】
不等式
两边同时乘以
,等价变形为
,利用
,
,将不等式变形为
,构造函数
,不等式变形为
,利用导数判断函数
在
上单调递增,从而确定
在
恒成立,即
在
恒成立.构造新函数
,利用导数求函数
的最大值,确定
的取值范围,即可.
由题意可知,不等式
变形为
.
设
,
则![]()
.
当
时
,即
在
上单调递减.
当
时
,即
在
上单调递增.
则
在
上有且只有一个极值点
,该极值点就是
的最小值点.
所以
,即
在
上单调递增.
若使得对任意
,恒有
成立.
则需对任意
,恒有
成立.
即对任意
,恒有
成立,则
在
恒成立.
设
则
.
当
时,
,函数
在
上单调递增
当
时,
,函数
在
上单调递减
则
在
上有且只有一个极值点
,该极值点就是
的最大值点.
所以
,即
,则实数
的最小值为
.
故选:D
科目:高中数学 来源: 题型:
【题目】已知椭圆
的焦点为
,
,离心率为
,点P为椭圆C上一动点,且
的面积最大值为
,O为坐标原点.
(1)求椭圆C的方程;
(2)设点
,
为椭圆C上的两个动点,当
为多少时,点O到直线MN的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查某大学学生的某天上网的时间,随机对
名男生和
名女生进行了不记名的问卷调查.得到了如下的统计结果:
表1:男生上网时间与频数分布表
上网时间(分钟) |
|
|
|
|
|
人数 |
|
|
|
|
|
表2:女生上网时间与频数分布表
上网时间(分钟) |
|
|
|
|
|
人数 |
|
|
|
|
|
(1)用分层抽样在
选取
人,再随机抽取
人,求抽取的
人都是女生的概率;
(2)完成下面的
列联表,并回答能否有
的把握认为“大学生上网时间与性别有关”?
上网时间少于 | 上网时间不少于 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:![]()
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的的参数方程为
(其中
为参数),以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,点
的极坐标为
,直线
经过点
.曲线
的极坐标方程为
.
(1)求直线
的普通方程与曲线
的直角坐标方程;
(2)过点
作直线
的垂线交曲线
于
两点(
在
轴上方),求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为
,(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C1:ρ=2cosθ,
.
(1)求C1与C2交点的直角坐标;
(2)若直线l与曲线C1,C2分别相交于异于原点的点M,N,求|MN|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元五世纪,数学家祖冲之估计圆周率
的值的范围是:3.1415926<
<3.1415927,为纪念祖冲之在圆周率的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.某小学教师为帮助同学们了解“祖率”,让同学们把小数点后的7位数字1,4,1,5,9,2,6进行随机排列,整数部分3不变,那么可以得到大于3.14的不同数字有( )
A.2280B.2120C.1440D.720
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂
,
两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知
,
生产线生产的产品为合格品的概率分别为
和
.
![]()
(1)从
,
生产线上各抽检一件产品,若使得至少有一件合格的概率不低于
,求
的最小值
.
(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的
作为
的值.
①已知
,
生产线的不合格产品返工后每件产品可分别挽回损失
元和
元。若从两条生产线上各随机抽检
件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?
②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利
元、
元、
元,现从
,
生产线的最终合格品中各随机抽取
件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为
,求
的分布列并估算该厂产量
件时利润的期望值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com