精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为实常数.

1)若存在,使得在区间内单调递减,求的取值范围;

2)当时,设直线与函数的图象相交于不同的两点,证明:.

【答案】1;(2)见解析.

【解析】

1)将所求问题转化为上有解,进一步转化为函数最值问题;

2)将所证不等式转化为,进一步转化为,然后再通过构造加以证明即可.

1,根据题意,内存在单调减区间,

则不等式上有解,由,设

,当且仅当时,等号成立,

所以当时,,所以存在,使得成立,

所以的取值范围为

2)当时,,则,从而

所证不等式转化为,不妨设,则不等式转化

,即

,令,则不等式转化为,因为

,则,从而不等式化为,设,则

,所以上单调递增,所以

即不等式成立,故原不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某湿地公园内有一条河,现打算建一座桥将河两岸的路连接起来,剖面设计图纸如下:

其中,点轴上关于原点对称的两点,曲线段是桥的主体,为桥顶,且曲线段在图纸上的图形对应函数的解析式为,曲线段均为开口向上的抛物线段,且分别为两抛物线的顶点,设计时要求:保持两曲线在各衔接处()的切线的斜率相等.

(1)求曲线段在图纸上对应函数的解析式,并写出定义域;

(2)车辆从爬坡,定义车辆上桥过程中某点所需要的爬坡能力为:(该点与桥顶间的水平距离)(设计图纸上该点处的切线的斜率),其中的单位:米.若该景区可提供三种类型的观光车:游客踏乘;蓄电池动力;内燃机动力.它们的爬坡能力分别为米,米,米,又已知图纸上一个单位长度表示实际长度米,试问三种类型的观光车是否都可以顺利过桥?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程

(2)过点作直线的垂线交曲线两点(轴上方),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意,恒有,则实数的最小值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.

1)若甲公司计划从这10次竞价中随机抽取3次竞价进行调研,其中每小时点击次数超过7次的竞价抽取次数记为,求的分布列与数学期望;

2)若把乙公司设置的每次点击价格为x,每小时点击次数为,则点近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线.(附:回归方程系数公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为研究学生语言学科的学习情况,现对高二200名学生英语和语文某次考试成绩进行抽样分析. 将200名学生编号为001,002,…,200,采用系统抽样的方法等距抽取10名学生,将10名学生的两科成绩(单位:分)绘成折线图如下:

(Ⅰ)若第一段抽取的学生编号是006,写出第五段抽取的学生编号;

(Ⅱ)在这两科成绩差超过20分的学生中随机抽取2人进行访谈,求2人成绩均是语文成绩高于英语成绩的概率;

(Ⅲ)根据折线图,比较该校高二年级学生的语文和英语两科成绩,写出你的结论和理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:,直线l不过原点O且不平行于坐标轴,l与E有两个交点A,B,线段AB的中点为M.

,点K在椭圆E上,分别为椭圆的两个焦点,求的范围;

证明:直线OM的斜率与l的斜率的乘积为定值;

若l过点,射线OM与椭圆E交于点P,四边形OAPB能否为平行四边形?若能,求此时直线l斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)过椭圆的右焦点作互相垂直的两条直线,其中直线交椭圆于两点,直线交直线点,求证:直线平分线段.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点,该抛物线的准线与椭圆:相切,且椭圆的离心率为,点为椭圆的右焦点.

1)求椭圆的标准方程;

2)过点的直线与椭圆交于两点,为平面上一定点,且满足,求直线的方程.

查看答案和解析>>

同步练习册答案