精英家教网 > 高中数学 > 题目详情
12.已知△ABC,O为三角形内一点
(1)已知$\overrightarrow{OA}$$⊥\overrightarrow{BC}$,$\overrightarrow{OB}$⊥$\overrightarrow{AC}$,求证$\overrightarrow{OC}$⊥$\overrightarrow{AB}$;
(2)若△ABC的三条边a,b,c上三条高分别为ha=$\frac{1}{5}$,hb=$\frac{1}{11}$,hc=$\frac{1}{13}$,求三角形最大角的余弦.

分析 (1)利用向量垂直与数量积的关系、向量三角形法则即可得出.
(2)利用三角形面积计算公式、余弦定理即可得出.

解答 (1)证明:∵$\overrightarrow{OA}$$⊥\overrightarrow{BC}$,$\overrightarrow{OB}$⊥$\overrightarrow{AC}$,
∴$\overrightarrow{OA}$•$\overrightarrow{BC}$=0,$\overrightarrow{OB}$•$\overrightarrow{AC}$=0,
∴0=$\overrightarrow{OA}$•$\overrightarrow{BC}$=$(\overrightarrow{OC}+\overrightarrow{CA})$$•\overrightarrow{BC}$=$\overrightarrow{OC}•\overrightarrow{BC}$+$\overrightarrow{CA}•\overrightarrow{BC}$,
0=$\overrightarrow{OB}$•$\overrightarrow{AC}$=$(\overrightarrow{OC}+\overrightarrow{CB})$•$\overrightarrow{AC}$=$\overrightarrow{OC}•\overrightarrow{AC}$+$\overrightarrow{CB}•\overrightarrow{AC}$,
∴$\overrightarrow{OC}$$\overrightarrow{BC}$-$\overrightarrow{OC}•\overrightarrow{AC}$=0,∴$\overrightarrow{OC}•\overrightarrow{BA}$=0,∴$\overrightarrow{OC}$⊥$\overrightarrow{AB}$.
(2)设△ABC面积为S,由面积公式可知$\left\{\begin{array}{l}{\frac{1}{2}×\frac{1}{13}×AB=S}\\{\frac{1}{2}×\frac{1}{11}×AC=S}\\{\frac{1}{2}×\frac{1}{5}×BC=S}\end{array}\right.$,
∴AB=26S,AC=22S,BC=10S,
∴∠C为最大角,
∴cosC=$\frac{(22S)^{2}+(10S)^{2}-(26S)^{2}}{2×22S×10S}$=-$\frac{23}{110}$.

点评 本题考查了向量垂直与数量积的关系、向量三角形法则、三角形面积计算公式、余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4m,跨度为 10m,把它的图形放在如图所示直角坐标系中.
(1)求这条抛物线所对应的函数关系式.
(2)如图,在对称轴右边 1m 处,桥洞离水面的高是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.log4[log4(log381)]=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-x,如果过点(2,m)可作曲线y=f(x)的三条切线,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=log2(x+1),且a>b>c>0,则$\frac{f(a)}{a},\frac{f(b)}{b},\frac{f(c)}{c}$的大小顺序是$\frac{f(c)}{c}>\frac{f(b)}{b}>\frac{f(a)}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z1=cosθ-i,z2=sinθ+i,则z1z2的虚部和实部的最大值(  )
A.$\sqrt{2}和1$B.$\sqrt{3}和\frac{3}{2}$C.$\sqrt{2}和\frac{3}{2}$D.2和1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=lnx+ax,$g(x)=\frac{1}{2}a{x^2}-(2a+1)x$
(1)若a=1,证明:x∈[1,2]时,$f(x)-3<\frac{1}{x}$成立
(2)讨论函数y=f(x)+g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.现有6本不同的书,按以下要求各有多少种分法?
(1)平均分成三组;
(2)平均分给甲、乙、丙三人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在极坐标系(以坐标原点O为极点,x轴的正半轴为极轴)中,曲线C2的方程为ρsin2θ=2pcosθ(p>0),曲线C1、C2交于A、B两点.
(Ⅰ)若p=2且定点P(0,-4),求|PA|+|PB|的值;
(Ⅱ)若|PA|,|AB|,|PB|成等比数列,求p的值.

查看答案和解析>>

同步练习册答案