精英家教网 > 高中数学 > 题目详情
1.现有6本不同的书,按以下要求各有多少种分法?
(1)平均分成三组;
(2)平均分给甲、乙、丙三人.

分析 (1)此为平均分组问题,求出组合总数除以A33即可;
(2)先分组,再排序即可.

解答 解:(1)此为平均分组问题,共有$\frac{C_6^2C_4^2C_2^2}{3!}=15$种分法;
(2)先分组,再排序,共有$\frac{C_6^2C_4^2C_2^2}{3!}•3!=90$种分法.

点评 本题考查排列、组合及简单计数问题,正确区分无序不均匀分组问题.有序不均匀分组问题.无序均匀分组问题.是解好组合问题的一部分;本题考查计算能力,理解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.观察下面的算式:
${1^2}=\frac{1}{6}×1×2×3$,
${1^2}+{2^2}=\frac{1}{6}×2×3×5$,
${1^2}+{2^2}+{3^2}=\frac{1}{6}×3×4×7$,
则12+22+…+n2=$\frac{1}{6}n({n+1})({2n+1})$(其中n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC,O为三角形内一点
(1)已知$\overrightarrow{OA}$$⊥\overrightarrow{BC}$,$\overrightarrow{OB}$⊥$\overrightarrow{AC}$,求证$\overrightarrow{OC}$⊥$\overrightarrow{AB}$;
(2)若△ABC的三条边a,b,c上三条高分别为ha=$\frac{1}{5}$,hb=$\frac{1}{11}$,hc=$\frac{1}{13}$,求三角形最大角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.时针走过2时40分,则分针转过的角度是(  )
A.80°B.-80°C.960°D.-960°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$两个焦点为分别为F1(-1,0),F2(1,0),过点F2的直线l与该双曲线的右支交于M,N两点,且△F1MN是以N为直角顶点的等腰直角三角形,则a2为(  )
A.$\frac{{5-\sqrt{2}}}{17}$B.$\frac{{5+\sqrt{2}}}{17}$C.$\frac{{5-2\sqrt{2}}}{17}$D.$\frac{{5+2\sqrt{2}}}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A={x||x-a|≤2},B={x||x-1}|≥3},若A∩B=∅,则
(1)求集合B;
(2)求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某几何体的三视图如图所示,该几何体外接球的体积为(  )
A.288πB.72πC.36πD.18π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=x3cosx+1,若f(a)=11,则f(-a)=(  )
A.-6B.6C.-9D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如果函数y=f(x)的导函数y=f′(x)的图象如图所示,给出下列判断:
①函数y=f′(x)在区间(-3,-$\frac{1}{2}$)内单调递增;
②函数y=f′(x)在区间(-$\frac{1}{2}$,3)内单调递减;
③函数y=f(x)在区间(4,5)内单调递增;
④当x=2时,函数y=f(x)有极小值;
⑤当x=-$\frac{1}{2}$时,函数y=f′(x)有极大值;
则上述判断中正确的是①②③⑤.

查看答案和解析>>

同步练习册答案