精英家教网 > 高中数学 > 题目详情
10.设函数f(x)=x3cosx+1,若f(a)=11,则f(-a)=(  )
A.-6B.6C.-9D.9

分析 由f(x)解析式得出f(x)-1=x3cosx,而f(a)=11,从而可得出a3cosa=10,而f(-a)-1=-a3cosa,这样即可求出f(-a)的值.

解答 解:f(x)-1=x3cosx;
∴f(a)-1=a3cosa=10;
∴f(-a)-1=-a3cosa=-10;
∴f(-a)=-9.
故选:C.

点评 考查奇函数的定义,奇函数的形式f(-x)=-f(x),以及三角函数的诱导公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-x,如果过点(2,m)可作曲线y=f(x)的三条切线,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.现有6本不同的书,按以下要求各有多少种分法?
(1)平均分成三组;
(2)平均分给甲、乙、丙三人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定义在R上的函数y=f(x)对于任意的x都满足f(x+2)=f(x).当-1≤x<1时,f(x)=x3.若函数g(x)=f(x)-loga|x|至少有6个零点,则a的取值范围是(0,$\frac{1}{5}$]∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…8)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\overrightarrow{x}$$\overrightarrow{y}$$\overrightarrow{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(1)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.现有7名世博会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2通晓俄语,C1、C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.已知每个志愿者被选中的机会均等.
(Ⅰ)求A1被选中的概率;
(Ⅱ)求B1和C1至少有一人被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在极坐标系(以坐标原点O为极点,x轴的正半轴为极轴)中,曲线C2的方程为ρsin2θ=2pcosθ(p>0),曲线C1、C2交于A、B两点.
(Ⅰ)若p=2且定点P(0,-4),求|PA|+|PB|的值;
(Ⅱ)若|PA|,|AB|,|PB|成等比数列,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在Rt△ABC中,∠C=90°,a=1,b=3,则cosA=(  )
A.$\frac{3\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{10}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设集合A={0,2,3},B={x+1,x2+4},A∩B={3},则实数x的值为2.

查看答案和解析>>

同步练习册答案