【题目】已知抛物线C:y2=2x,过点E(a,0)的直线l与C交于不同的两点P(x1,y1),Q(x2,y2),且满足y1y2=﹣4,以Q为中点的线段的两端点分别为M,N,其中N在x轴上,M在C上,则a=_____.|PM|的最小值为_____.
【答案】2 4
【解析】
过点E(a,0)的直线l的方程设为x=my+a,代入抛物线的方程,运用韦达定理,结合条件,解方程可得a的值;再设直线PM的方程为x=ny+b,联立抛物线方程,设M(x3,y3),运用韦达定理和中点坐标公式,可得b=4,再由弦长公式和二次函数的最值求法,可得所求最小值.
过点E(a,0)的直线l的方程设为x=my+a,代入抛物线方程y2=2x,可得y2﹣2my﹣2a=0,
所以y1+y2=2m,y1y2=﹣2a=﹣4,可得a=2;
设直线PM的方程为x=ny+b,联立抛物线方程y2=2x,
可得y2﹣2ny﹣2b=0,
设M(x3,y3),所以y1+y3=2n,y1y3=﹣2b,
由Q为MN的中点,且N在x轴上,可得y3=2y2,
即有2y1y2=﹣2b=﹣8,可得b=4,
则|PM|![]()
![]()
2![]()
2
4
,
当n=0即PM⊥x轴时,|PM|取得最小值4
.
故答案为:2;4
.
科目:高中数学 来源: 题型:
【题目】已知顶点为原点
的抛物线
,焦点
在
轴上,直线
与抛物线
交于
、
两点,且线段
的中点为
.
(1)求抛物线
的标准方程.
(2)若直线
与抛物线
交于异于原点的
、
两点,交
轴的正半轴于点
,且有
,直线
,且
和
有且只有一个公共点
,请问直线
是否恒过定点?若是,求出定点坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某数学教师在甲、乙两个平行班采用“传统教学”和“高效课堂”两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班中各随机抽取
名学生的数学成绩进行统计,得到如下的茎叶图:
![]()
(Ⅰ)求甲、乙两班抽取的分数的中位数,并估计甲、乙两班数学的平均水平和分散程度(不要求计算出具体值,给出结论即可);
(Ⅱ)若规定分数在
的为良好,现已从甲、乙两班成绩为良好的同学中,用分层抽样法抽出
位同学进行问卷调查,求这
位同学中恰含甲、乙两班所有
分以上的同学的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,已知的有中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重的疾病,新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株,某小区为进一步做好新型冠状病毒肺炎疫情知识的教育,在小区内开展“新型冠状病毒防疫安全公益课”在线学习,在此之后组织了“新型冠状病毒防疫安全知识竞赛”在线活动.已知进入决赛的分别是甲、乙、丙、丁四位业主,决赛后四位业主相应的名次为第1,2,3,4名,该小区为了提高业主们的参与度和重视度,邀请小区内的所有业主在比赛结束前对四位业主的名次进行预测,若预测完全正确将会获得礼品,现用
表示某业主对甲、乙、丙、丁四位业主的名次做出一种等可能的预测排列,记
.
(1)求出
的所有可能情形;
(2)若
会有小礼品赠送,求该业主获得小礼品的概率,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司招聘快递骑手,该公司提供了两种日工资方案:方案(1)规定每日底薪50元,快递骑手每完成一单业务提成3元:方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快递公司记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为
七组,整理得到如图所示的频率分布直方图.
![]()
(Ⅰ)随机选取一天,估计这一天该快递公司的骑手的人均日快递业务量不少于65单的概率;
(Ⅱ)若骑手甲、乙、丙选择了日工资方案(1),丁、戊选择了日工资方案(2).现从上述5名骑手中随机选取2人,求至少有1名骑手选择方案(2)的概率;
(Ⅲ)若仅从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由(同组中的每个数据用该组区间的中点值代替)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com