精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足

)求证:

)设数列的前项和为,求证:

)设数列的前项和为,求证:当时,

【答案】)证明见解析;()证明见解析;()证明见解析.

【解析】

)推导出数列,可得出,利用基本不等式可得出,再由可得出,利用作差法证得,进而可证得结论;

)由可得出,结合可推导出,进而得出,再利用放缩法可证得结论成立;

)由可推导出,进而可得出,再利用累加法及等比数列的求和公式即可证明.

)因为,则为常数数列,

,且,则

,易知

所以(当且仅当时取等号),

因为,因此

,所以

)由,有

,则,则

,即

所以

时,

时,

因此,的前项和

)由,得

,则,故

所以

因此,的前项和

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图抛物线的焦点为为抛物线上一点(轴上方),点到轴的距离为4.

1)求抛物线方程及点的坐标;

2)是否存在轴上的一个点,过点有两条直线,满足交抛物线两点.与抛物线相切于点不为坐标原点),有成立,若存在,求出点的坐标.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.曲线的极坐标方程为,曲线与曲线的交线为直线

1)求直线和曲线的直角坐标方程;

2)直线轴交于点,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)当时,证明曲线分别在点和点处的切线为不同的直线;

3)已知过点能作曲线的三条切线,求所满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】武汉出现的新型冠状病毒是一种可以通过飞沫传播的变异病毒,某药物研究所为筛查该新型冠状病毒,需要检验血液是否为阳性,现有份血液样本,每份样本取到的可能性均等,有以下两种检验方式:①逐份检验,则需要检验n次;②混合检验,将其中份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份血液全为阴性,因此这k份血液样本检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份血液再逐份检验,此时这k份血液的检验次数总共为.假设在接受检验的血液样本中,每份样本的检验结果是阴性还是阳性都是独立的,且每份样本是阳性结果的概率为.

1)假设有5份血液样本,其中只有2份为阳性,若采取逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;

2)现取其中份血液样本,记采用逐份检验方式,样本需要检验的次数为,采用混合检验方式,样本需要检验的总次数为.

i)试运用概率统计知识,若,试求P关于k的函数关系式

ii)若,采用混合检验方式可以使得这k份血液样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)若函数在区间上不单调,求的取值范围;

(2)若函数在区间上有极大值,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20194月,河北、辽宁、江苏、福建、湖北、湖南、广东、重庆等8省市发布高考综合改革实施方案,决定从2018年秋季入学的高中一年级学生开始实施高考模式.所谓,即“3”是指考生必选语文、数学、外语这三科;“1”是指考生在物理、历史两科中任选一科;“2”是指考生在生物、化学、思想政治、地理四科中任选两科.

1)若某考生按照模式随机选科,求选出的六科中含有语文,数学,外语,物理,化学的概率.

2)新冠疫情期间,为积极应对新高考改革,某地高一年级积极开展线上教学活动.教育部门为了解线上教学效果,从当地不同层次的学校中抽取高一学生2500名参加语数外的网络测试,并给前400名颁发荣誉证书,假设该次网络测试成绩服从正态分布,且满分为450.

①考生甲得知他的成绩为270分,考试后不久了解到如下情况:此次测试平均成绩为171分,351分以上共有57,请用你所学的统计知识估计甲能否获得荣誉证书,并说明理由;

②考生丙得知他的实际成绩为430分,而考生乙告诉考生丙:这次测试平均成绩为201分,351分以上共有57,请结合统计学知识帮助丙同学辨别乙同学信息的真伪,并说明理由.

附:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱锥SABC中,△ABC与△SBC都是边长为1的正三角形,二面角ABCS的大小为,若SABC四点都在球O的表面上,则球O的表面积为(

A.πB.πC.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy22x,过点Ea0)的直线lC交于不同的两点Px1y1),Qx2y2),且满足y1y2=﹣4,以Q为中点的线段的两端点分别为MN,其中Nx轴上,MC上,则a_____|PM|的最小值为_____

查看答案和解析>>

同步练习册答案