精英家教网 > 高中数学 > 题目详情
如图,三棱锥P-ABC中,PB⊥底面ABC于B,∠BCA=90°,PB=BC=CA=2,点E、F分别是PC、AP的中点.
(1)求证:侧面PAC⊥侧面PBC;
(2)求异面直线AE与BF所成的角.
分析:(1)由已知中PB⊥底面ABC于B,,∠BCA=90°,我们易根据面面垂直的判定定理及面面垂直的性质定理得到侧面PAC⊥侧面PBC;
(2)以BP所在直线为z轴,CB所在直线y轴,建立空间直角坐标系,分别求出直线AE与BF的方向向量,代入向量夹角公式,即可得到答案.
解答:解:(1)∵PB⊥平面ABC∴平面PBC⊥平面ABC…(3分)
又∵AC⊥BC,
∴AC⊥平面PBC…(6分)
∴侧面PAC⊥侧面PBC…(7分)
(2)以BP所在直线为z轴,CB所在直线为y轴,
建立空间直角坐标系,由已知可得
P(0,0,2),B(0,0,0),
C(0,-2,0)A(2,-2,0)
则E(0,-1,1),F(1,-1,1)?????(10分)
AE
=(-2,1,1),
BF
=(1,-1,1)
AE
?
BF
=-2|
AE
|?|
BF
|=3
2

∴cos
AE
BF
>=-
2
3
???????????(13分)
即AE与BF所成的角是arccos
2
3
??????????(14分)
点评:本题以三棱锥为载体,考查平面与平面垂直的判定及用空间向量法求平面与平面及直线与直线之间夹角,其中建立适当的坐标系,求出各个顶点的坐标,进而将空间线线、面面夹角转化为求向量夹角问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱锥P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB
(Ⅰ)求证:AB⊥平面PCB;
(Ⅱ)求二面角C-PA-B的大小的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)如图,三棱锥P-ABC中,
PA
AB
=
PA
AC
=
AB
AC
=0
PA
2
=
AC
2
=4
AB
2

(Ⅰ)求证:AB⊥平面PAC;
(Ⅱ)若M为线段PC上的点,设
|
PM|
|PC
|
,问λ为何值时能使直线PC⊥平面MAB;
(Ⅲ)求二面角C-PB-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)如图,三棱锥P-ABC中,侧面PAC⊥底面ABC,∠APC=90°,且AB=4,AP=PC=2,BC=2
2

(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)若E为侧棱PB的中点,求直线AE与底面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳二模)如图,三棱锥P-ABC中,PA丄面ABC,∠ABC=90°,PA=AB=1,BC=2,则P-ABC的外接球的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在三棱锥P-ABC中,AB⊥PC,AC=2,BC=4,AB=2
3
,∠PCA=30°.
(1)求证:AB⊥平面PAC. (2)设二面角A-PC-B•的大小为θ•,求tanθ•的值.

查看答案和解析>>

同步练习册答案