| A. | (¬p)∧q | B. | (¬p)∨(¬q) | C. | p∧(¬q) | D. | p∨(¬q) |
分析 对于命题p,容易发现x=-1时,2x>3x成立,所以命题p是真命题;对于?x∈$(0,\frac{π}{2})$,$\frac{1}{cosx}>1,sinx>0$,所以便可得到tanx>sinx,所以命题q是真命题,然后根据¬p,p∧q,p∨q的真假和p,q真假的关系即可找出正确选项.
解答 解:x=-1时,2x>3x,∴命题p是真命题;
$tanx=\frac{sinx}{cosx}$,x$∈(0,\frac{π}{2})$;
∴0<cosx<1,sinx>0;
∴$\frac{1}{cosx}>1$,$\frac{sinx}{cosx}>sinx$;
即tanx>sinx,∴命题q是真命题;
∴¬p是假命题,(¬p)∧q是假命题,¬q是假命题,(¬p)∨(¬q)是假命题,p∧(¬q)是假命题,p∨(¬q)为真命题.
故选D.
点评 考查指数函数的值域,指数函数的图象,正弦函数、余弦函数的值域,切化弦公式,以及真假命题的概念,¬p,p∧q,p∨q真假和p,q真假的关系.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{5\sqrt{5}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com