精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\left\{\begin{array}{l}{2-x,x>a}\\{{x}^{2}+3x+2,x≤a}\end{array}\right.$恰有三个不同的零点,则实数a的取值范围是(  )
A.[-2,2)B.[-1,2)C.(-2,-1]D.(-1,2]

分析 由题意可得需使指数函数部分与x轴有一个交点,抛物线部分与x轴有两个交点,由函数图象的平移和二次函数的顶点可得关于a的不等式,解之可得答案.

解答 解:由题意可知:函数图象的右半部分为单调递减一次函数的部分,最多一个零点,
函数图象的左半部分为开口向上的抛物线,对称轴为x=-$\frac{3}{2}$,最多两个零点,

如上图,要满足题意,必须指数函数的部分向下平移到与x轴相交,
由一次函数过点(2,0),二次函数的零点为:-2.-1,
函数f(x)=$\left\{\begin{array}{l}{2-x,x>a}\\{{x}^{2}+3x+2,x≤a}\end{array}\right.$恰有三个不同的零点,-1≤a<2,
故选:B.

点评 本题考查根的存在性及根的个数的判断,数形结合是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.抛物线y2=2px的准线经过点(-2,0),则该抛物线的焦点坐标为(  )
A.(-2,0)B.(2,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,PA=PB,PA⊥PB,AB⊥BC,且平面PAB⊥平面ABCD,若AB=2,BC=1,$AD=BD=\sqrt{5}$.
(1)求证:PA⊥平面PBC;
(2)若点M在棱PB上,且PM:MB=3,求证CM∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=alnx-x(a>0).
(1)当a=2时,求函数f(x)在x=1处的切线方程;
(2)若不等式f(x)≤-1对任意x∈(0,+∞)恒成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示是求等比数列前n项和的流程图,则空白处应填(  )
A.q=1B.q≠1C.q>1D.q<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)是定义在R上的奇函数,当x≤0时,f(x)=x2-2x+c,则f(1)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x+(1-a)lnx+$\frac{a}{x}$(a∈R).
(1)求函数f(x)的单调区间;
(2)若存在x0∈[1,e],使得f(x0)≤2成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知直线l与x轴不垂直,且直线l过点M(2,0)与抛物线y2=4x交于A,B两点,则$\frac{1}{{{{|{AM}|}^2}}}+\frac{1}{{{{|{BM}|}^2}}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若关于x的不等式2x3+3x2-12x+4≤$\frac{4m{e}^{x}+2x}{{e}^{x}}$在[-2,+∞)上有解,则实数m 的最小值为(  )
A.-$\frac{3}{4}$-$\frac{1}{e}$B.-$\frac{3}{4}$-$\frac{1}{2e}$C.-$\frac{4}{3}$-$\frac{1}{e}$D.-$\frac{4}{3}$-$\frac{1}{2e}$

查看答案和解析>>

同步练习册答案