精英家教网 > 高中数学 > 题目详情
12.若关于x的不等式2x3+3x2-12x+4≤$\frac{4m{e}^{x}+2x}{{e}^{x}}$在[-2,+∞)上有解,则实数m 的最小值为(  )
A.-$\frac{3}{4}$-$\frac{1}{e}$B.-$\frac{3}{4}$-$\frac{1}{2e}$C.-$\frac{4}{3}$-$\frac{1}{e}$D.-$\frac{4}{3}$-$\frac{1}{2e}$

分析 分离参数,构造函数,利用导数求出函数的最小值即可

解答 解:2x3+3x2-12x+4≤$\frac{4m{e}^{x}+2x}{{e}^{x}}$在[-2,+∞]上有解,
∴4m≥2x3+3x2-12x+4-$\frac{2x}{{e}^{x}}$,
设f(x)=2x3+3x2-12x+4-$\frac{2x}{{e}^{x}}$,
∴f′(x)=6x2+6x-12+2×$\frac{x-1}{{e}^{x}}$,
令f′(x)=0,解得x=1,
故当x∈[-2,1)时,f′(x)<0,
当x∈(1,+∞)时,f′(x)>0,
故f(x)在[-2,1)上是减函数,在(1,+∞)上是增函数,
∴f(x)min=f(1)=2+3-12+4-$\frac{2}{e}$=-3-$\frac{2}{e}$,
∴m≥-$\frac{3}{4}$-$\frac{1}{2e}$,
故选:B

点评 本题考查了不等式的化简与应用,同时考查了导数的综合应用及存在性问题的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{2-x,x>a}\\{{x}^{2}+3x+2,x≤a}\end{array}\right.$恰有三个不同的零点,则实数a的取值范围是(  )
A.[-2,2)B.[-1,2)C.(-2,-1]D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(1-2x)5的展开式中含x3的系数为(  )
A.-80B.80C.10D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE且CE=AC=2BD,试在AE上确定一点M,使得DM∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据,
患心脏病未患心脏病合计
每一晚都打鼾30224254
不打鼾2413551379
合计5415791633
根据独立性检验原理,能否在犯错误的概率不超过0.001的前提下认为每一晚都打鼾与患心脏病有关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设(2-x)10=a0+a1x+a2x2+…+a10x10,则a1+a2+…+a10=(  )
A.-1023B.-1024C.1025D.-1025

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在极坐标系中,点(2,$\frac{π}{3}$)到圆ρ=2cos θ的圆心的距离为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,△ABO是以∠O=120°为顶点的等腰三角形,点P在以AB为直径的半圆内(包括边界),若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x、y∈R),则x2+y2的取值范围是[$\frac{1}{2}$,2+$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,-1),若$\overrightarrow{a}$∥($\overrightarrow{a}-\overrightarrow{b}$),则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为π.

查看答案和解析>>

同步练习册答案