精英家教网 > 高中数学 > 题目详情
2.如图,△ABO是以∠O=120°为顶点的等腰三角形,点P在以AB为直径的半圆内(包括边界),若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x、y∈R),则x2+y2的取值范围是[$\frac{1}{2}$,2+$\sqrt{3}$].

分析 两边平方,得出|OP|2关于x,y的表达式,根据|OP|的范围得出不等式组,利用基本不等式的性质得出结论.

解答 解:设OA=OB=1,则$\overrightarrow{OA}•\overrightarrow{OB}$=-cos120°=-$\frac{1}{2}$,AB=$\sqrt{3}$,O到AB的距离为$\frac{1}{2}$,
∵$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,∴${\overrightarrow{OP}}^{2}$=x2${\overrightarrow{OA}}^{2}$+y2${\overrightarrow{OB}}^{2}$+2xy$\overrightarrow{OA}•\overrightarrow{OB}$=x2+y2-xy,
∵P在以AB为直径的半圆内(包括边界),
∴$\frac{1}{2}$≤OP≤$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$,
∴$\frac{1}{4}$≤x2+y2-xy≤1+$\frac{\sqrt{3}}{2}$,
由图可知x>0,y>0,∴xy≤$\frac{1}{2}$(x2+y2),
∴$\frac{1}{4}$≤$\frac{1}{2}$(x2+y2)≤1+$\frac{\sqrt{3}}{2}$,
∴$\frac{1}{2}$≤x2+y2≤2+$\sqrt{3}$.
故答案为:[$\frac{1}{2}$,2+$\sqrt{3}$].

点评 本题考查了平面向量的基本定理,数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知直线l与x轴不垂直,且直线l过点M(2,0)与抛物线y2=4x交于A,B两点,则$\frac{1}{{{{|{AM}|}^2}}}+\frac{1}{{{{|{BM}|}^2}}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若关于x的不等式2x3+3x2-12x+4≤$\frac{4m{e}^{x}+2x}{{e}^{x}}$在[-2,+∞)上有解,则实数m 的最小值为(  )
A.-$\frac{3}{4}$-$\frac{1}{e}$B.-$\frac{3}{4}$-$\frac{1}{2e}$C.-$\frac{4}{3}$-$\frac{1}{e}$D.-$\frac{4}{3}$-$\frac{1}{2e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=x2的图象在点$({{x_0},{x_0}^2})$处的切线为m,若m也与函数y=lnx,x∈(0,1]的图象相切,则x0必满足(  )
A.$0<{x_0}<\frac{1}{2}$B.$\frac{1}{2}<{x_0}<1$C.$\frac{{\sqrt{2}}}{2}<{x_0}<\sqrt{2}$D.$\sqrt{2}<{x_0}<\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C的两焦点为F1(-2$\sqrt{2}$,0),F2(2$\sqrt{2}$,0),离心率e=$\frac{\sqrt{6}}{3}$.
(1)求此椭圆C的方程;
(2)过点M(0,t)的直线l(斜率存在时)与椭圆C交于P,Q两点,设D为椭圆C与y轴负半轴的交点,且|$\overrightarrow{DP}$|=|$\overrightarrow{DQ}$|.求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|x≥0},N={x|x2<1},则M∩N=(  )
A.[0,1]B.[0,1)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数$\frac{a+2i}{1+i}$(a∈R,i是虚数单位)是纯虚数,则实数a的值为(  )
A.-2B.-6C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知三角形ABC中,角A,B,C的对边分别为a,b,c,若$sin2A=\sqrt{3}cos2A$,且角A为锐角.
(1)求三角形内角A的大小;
(2)若a=5,b=8,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4,甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),则甲获胜的概率为(  )
A.$\frac{4}{9}$B.$\frac{3}{4}$C.$\frac{5}{8}$D.$\frac{3}{8}$

查看答案和解析>>

同步练习册答案