精英家教网 > 高中数学 > 题目详情
19.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE且CE=AC=2BD,试在AE上确定一点M,使得DM∥平面ABC.

分析 AE中点为M,取AC中点为N,通过证明四边形MNBD是平行四边形得出DM∥BN,从而可得DM∥平面ABC.

解答 解:取AE中点为M,取AC中点为N,连结MD,MN,NB,
在△ABC中,∵M,N分别是边AC,AE的中点,∴CE=2MN且MN∥CE,
又∵CE=2BD且BD∥CE,
∴MN∥BD且MN=BD,
∴四边形BDMN是平行四边形.
∴DM∥BN,
又∵BN?平面ABC,DM?平面ABC,
∴DM∥平面ABC.
故M为AE的中点时,DM∥平面ABC.

点评 本题考查了线面平行的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=alnx-x(a>0).
(1)当a=2时,求函数f(x)在x=1处的切线方程;
(2)若不等式f(x)≤-1对任意x∈(0,+∞)恒成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知直线l与x轴不垂直,且直线l过点M(2,0)与抛物线y2=4x交于A,B两点,则$\frac{1}{{{{|{AM}|}^2}}}+\frac{1}{{{{|{BM}|}^2}}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x、y满足$\left\{{\begin{array}{l}{x-y≥0}\\{{x^2}-y≤0}\end{array}}\right.$,则$z=-\frac{1}{2}x+y$的取值范围是$[-\frac{1}{16},\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,a、b、c分别是角A、B、C的对边.若$\frac{sinC}{sinA}=2$,b2-a2=$\frac{3}{2}$ac,则cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn=n•2n对任意的正整数n恒成立.
(1)若a1,a2,a3,…,an+1成等差数列,求出该数列的通项公式;
(2)若a1是已知数,求数列a1,a2,a3,…,an+1的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若关于x的不等式2x3+3x2-12x+4≤$\frac{4m{e}^{x}+2x}{{e}^{x}}$在[-2,+∞)上有解,则实数m 的最小值为(  )
A.-$\frac{3}{4}$-$\frac{1}{e}$B.-$\frac{3}{4}$-$\frac{1}{2e}$C.-$\frac{4}{3}$-$\frac{1}{e}$D.-$\frac{4}{3}$-$\frac{1}{2e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=x2的图象在点$({{x_0},{x_0}^2})$处的切线为m,若m也与函数y=lnx,x∈(0,1]的图象相切,则x0必满足(  )
A.$0<{x_0}<\frac{1}{2}$B.$\frac{1}{2}<{x_0}<1$C.$\frac{{\sqrt{2}}}{2}<{x_0}<\sqrt{2}$D.$\sqrt{2}<{x_0}<\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知三角形ABC中,角A,B,C的对边分别为a,b,c,若$sin2A=\sqrt{3}cos2A$,且角A为锐角.
(1)求三角形内角A的大小;
(2)若a=5,b=8,求c的值.

查看答案和解析>>

同步练习册答案