精英家教网 > 高中数学 > 题目详情
5.已知a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn=n•2n对任意的正整数n恒成立.
(1)若a1,a2,a3,…,an+1成等差数列,求出该数列的通项公式;
(2)若a1是已知数,求数列a1,a2,a3,…,an+1的通项公式.

分析 (1)a1,a2,a3,…,an+1成等差数列,设公差为d.令n=1,2,有,a1+a2=2,a1+2a2+a3=2×22=8,解得
a1,d.即可得出an
(2)a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn=n•2n,n≥2时,${a}_{1}{∁}_{n-1}^{0}$+${a}_{2}{∁}_{n-1}^{1}$+…+${a}_{n}{∁}_{n-1}^{n-1}$=(n-1)•2n-1,根据${∁}_{n}^{k}-{∁}_{n-1}^{k}$=${∁}_{n-1}^{k-1}$,相减可得:a1(1-1)+a2${∁}_{n-1}^{0}$+${a}_{3}{∁}_{n-1}^{1}$+…+an${∁}_{n-1}^{n-2}$+an+1Cnn=(n+1)•2n-1,再相减可得:(a2-a1)${∁}_{n-1}^{0}$+(a3-a2)${∁}_{n-1}^{1}$+…+(an+1-an)${∁}_{n-1}^{n-1}$=2•2n-1,即可得出a2-a1=a3-a2=…=an+1-an=2,进而得出.

解答 解:(1)a1,a2,a3,…,an+1成等差数列,设公差为d.
令n=1,2,有,a1+a2=2,a1+2a2+a3=2×22=8,
∴2a1+d=2,4a1+4d=8,解得a1=0,d=2.
∴an=2(n-1).
(2)a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn=n•2n,①
∴n≥2时,${a}_{1}{∁}_{n-1}^{0}$+${a}_{2}{∁}_{n-1}^{1}$+…+${a}_{n}{∁}_{n-1}^{n-1}$=(n-1)•2n-1,②
又${∁}_{n}^{k}-{∁}_{n-1}^{k}$=${∁}_{n-1}^{k-1}$,
相减可得:a1(1-1)+a2${∁}_{n-1}^{0}$+${a}_{3}{∁}_{n-1}^{1}$+…+an${∁}_{n-1}^{n-2}$+an+1Cnn=(n+1)•2n-1,③
③-②可得:(a2-a1)${∁}_{n-1}^{0}$+(a3-a2)${∁}_{n-1}^{1}$+…+(an+1-an)${∁}_{n-1}^{n-1}$=2•2n-1
∴a2-a1=a3-a2=…=an+1-an=2,
∴an=a1+2(n-1),
an+1=a1+2n.

点评 本题考查了等差数列的通项公式及其性质、方程的思想、二项式定理及其性质、组合数的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.复数z=1+$\frac{2-i}{2+4i}$(i是虚数单位)在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}中,已知a2与a4是方程x2-6x+8=0的两个根,若a4>a2,则a2018=(  )
A.2018B.2017C.2016D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x∈z|0≤x<3},B={x∈R|x2≤9},则A∩B=(  )
A.{1,2}B.{0,1,2}C.{x|0≤x<3}D.{x|0≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE且CE=AC=2BD,试在AE上确定一点M,使得DM∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知α,β,γ∈(0,$\frac{π}{2}$),且tanα=2,tanβ=$\frac{2}{3}$,tanγ=$\frac{1}{8}$,求α+β-γ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设(2-x)10=a0+a1x+a2x2+…+a10x10,则a1+a2+…+a10=(  )
A.-1023B.-1024C.1025D.-1025

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.满足等式sinx+cosx=1,x∈[0,2π]的x的集合是{2π,$\frac{π}{2}$,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)是定义在R上的奇函数,给出下列命题:
①f(0)=0,
②若f(x)在[0,+∞)上有最小值-1,则f(x)在(-∞,0]上有最大值1,
③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数,
④若x>0时,f(x)=x2-2x,则x<0时,f(x)=-x2-2x.
其中正确的序号是:①②④.

查看答案和解析>>

同步练习册答案