分析 先根据α、β、γ的正切直,确定α+β-γ的范围,再利用两角和差的正切公式,求得角α+β-γ的正切值,可得α+β-γ的值.
解答 解:∵α,β,γ∈(0,$\frac{π}{2}$),且tanα=2,tanβ=$\frac{2}{3}$,tanγ=$\frac{1}{8}$,∴α∈($\frac{π}{3}$,$\frac{π}{2}$),β∈($\frac{π}{6}$,$\frac{π}{4}$),γ∈( 0,$\frac{π}{4}$),
∴α+β-γ∈( $\frac{π}{4}$,$\frac{3π}{4}$),
tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$=$\frac{2+\frac{2}{3}}{1-2•\frac{2}{3}}$=-8,又tan(α+β-γ)=$\frac{tan(α+β)-tanγ}{1+tan(α+β)•tanγ}$=$\frac{-8-\frac{1}{8}}{1+(-8)•\frac{1}{8}}$不存在,
故α+β-γ=$\frac{π}{2}$.
点评 本题主要考查两角和差的正切公式,根据三角函数的值求角,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{27}$ | B. | $\frac{8}{27}$ | C. | $\frac{16}{27}$ | D. | $\frac{20}{27}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 27种 | B. | 36种 | C. | 54种 | D. | 81种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若p为真,则¬(¬p)也为真 | |
| B. | 若“p∧q为真”,则“p∨q为真”为真命题 | |
| C. | ?x∈R,使得tanx=2017 | |
| D. | “2x>$\frac{1}{2}$”是“log${\;}_{\frac{1}{2}}$x<0”的充分不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com