分析 (1)直线ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$ρ(sinθ-cosθ)=$\frac{\sqrt{2}}{2}$,利用互化公式即可得出.
(2)利用点到直线的距离公式即可得出.
解答 解:(1)直线ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$ρ(sinθ-cosθ)=$\frac{\sqrt{2}}{2}$,可得直角坐标方程:y-x=1,即x-y+1=0,
点A(2,$\frac{π}{4}$),化为直角坐标:$(\sqrt{2},\sqrt{2})$.
(2)点A到直线的距离d=$\frac{|\sqrt{2}-\sqrt{2}+1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
点评 本题考查了极坐标化为直角坐标、点到直线的距离公式,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 仅有两个不同的离心率e1,e2且e1∈(1,2),e2∈(4,6) | |
| B. | 仅有两个不同的离心率e1,e2且e1∈(2,3),e2∈(4,6) | |
| C. | 仅有一个离心率e且e∈(2,3) | |
| D. | 仅有一个离心率e且e∈(3,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{2}$ | C. | 10 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com