精英家教网 > 高中数学 > 题目详情
8.已知样本2,3,4,5,a的平均数是b,且点P(a-b,4b)在直线2x+y-8=0上,则该样本的标准差是(  )
A.2B.$\sqrt{2}$C.10D.$\sqrt{10}$

分析 根据题意,分析可得5b=14+a①和a+b=4②,解可得a、b的值,即可得数据,由样本的标准差公式计算可得答案.

解答 解:根据题意,样本2,3,4,5,a的平均数是b,则有5b=2+3+4+5+a,即5b=14+a①
且点P(a-b,4b)在直线2x+y-8=0上,则有2(a-b)+4b-8=0,即a+b=4②
联立①②可得:a=1,b=3,
则样本数据为:1,2,3,4,5;
则其标准差s=$\sqrt{\frac{(1-3)^{2}+(2-3)^{2}+(3-3)^{2}+(4-3)^{2}+(5-3)^{2}}{5}}$=$\sqrt{2}$;
故选:B.

点评 本题考查样本的方差与平均数,关键是求出a、b的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=({a+2{{cos}^2}\frac{x}{2}})cos({x+θ})$为奇函数,且$f({\frac{π}{2}})=0$,其中a∈R,θ∈(0,π).
(Ⅰ)求a,θ的值;
(Ⅱ)若$α∈({\frac{π}{2},π})$,$f(\frac{α}{2}+\frac{π}{8})+\frac{2}{5}cos(α+\frac{π}{4})cos2α=0$,求cosα-sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow m=(-1,2)$,向量$\overrightarrow n=(x,-1)$,若$\overrightarrow m∥\overrightarrow n$,则x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,点A(2,$\frac{π}{4}$).
(1)把极坐标方程化为直角坐标方程.
(2)求点A到直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某班小张等4位同学报名参加A、B、C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有(  )
A.27种B.36种C.54种D.81种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,三边长为连续的正整数,且最大角是最小角的2倍,则此三角形的三边长为(  )
A.1,2,3B.2,3,4C.3,4,5D.4,5,6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若an+1=2an+1(n=1,2,3,…).且a1=1.
(1)求a2,a3,a4,a5
(2)归纳猜想通项公式an并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在区间[0,4]上随机取两个数x,y,则xy∈[0,4]的概率是(  )
A.$\frac{2-ln4}{4}$B.$\frac{3-2ln4}{4}$C.$\frac{1+ln4}{4}$D.$\frac{1+2ln4}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义域为R的奇函数f(x)满足f(3-x)+f(x)=0,且当$x∈({-\frac{3}{2},0})$时,f(x)=log2(2x+7),则f(2017)=(  )
A.-2B.log23C.3D.-log25

查看答案和解析>>

同步练习册答案