精英家教网 > 高中数学 > 题目详情
17.已知向量$\overrightarrow m=(-1,2)$,向量$\overrightarrow n=(x,-1)$,若$\overrightarrow m∥\overrightarrow n$,则x=$\frac{1}{2}$.

分析 根据题意,由向量平行的坐标表示方法,可得2x=(-1)×(-1),解可得x的值,即可得答案.

解答 解:根据题意,向量$\overrightarrow m=(-1,2)$,向量$\overrightarrow n=(x,-1)$,
若$\overrightarrow m∥\overrightarrow n$,则有2x=(-1)×(-1),
解可得x=$\frac{1}{2}$;
故答案为:$\frac{1}{2}$.

点评 本题考查向量平行的坐标表示公式,关键是得到关于x的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某学校研究性学习小组对该校高二(1)班n名学生视力情况进行调查,得到如图所的频率分布直方图,已知视力在4.0~4.4范围内的学生人数为24人,视力在5.0~5.2范围内为正常视力,视力在3.8~4.0范围内为严重近视.
(1)求a,n的值;
(2)学习小组成员发现,学习成绩突出的学生近视的比较多,为了研究学生的视力与学习成绩是否有关系,对班级名次在前10名和后10名的学生进行了调查,得到如表中数据,根据表中的数据,能否在犯错误的概率不超过0.10的前提下认为视力与学习成绩有关系?
(3)若先按照分层抽样在正常视力和严重近视的学生中抽取6人进一步调查他们用眼习惯,再从这6人中随机抽取2人进行保护视力重要性的宣传,求视力正常人数ξ的分布列和期望.
是否近视/年级名次前10名后10名
近视97
不近视13
附:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等差数列{an}中,${a_2}=4,{a_5}=7,m,n∈{N^+}$,满足$a_1^m+a_2^m+a_3^m+…+a_n^m=a_{n+1}^m$,则n等于(  )
A.1和2B.2和3C.3和4D.2和4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,抛物线${C_2}:{y^2}=4x$,C1与C2有公共的焦点F,C1与C2在第一象限的公共点为M,直线MF的倾斜角为θ,且$cosθ=\frac{1-2a}{3-2a}$,则关于双曲线的离心率的说法正确的是(  )
A.仅有两个不同的离心率e1,e2且e1∈(1,2),e2∈(4,6)
B.仅有两个不同的离心率e1,e2且e1∈(2,3),e2∈(4,6)
C.仅有一个离心率e且e∈(2,3)
D.仅有一个离心率e且e∈(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x∈z|0≤x<3},B={x∈R|x2≤9},则A∩B=(  )
A.{1,2}B.{0,1,2}C.{x|0≤x<3}D.{x|0≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.指出下列命题的构成形式,并写出构成它的命题.
(1)36是6与18的倍数;
(2)x=1不是方程x2+3x-4=0的根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知α,β,γ∈(0,$\frac{π}{2}$),且tanα=2,tanβ=$\frac{2}{3}$,tanγ=$\frac{1}{8}$,求α+β-γ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知样本2,3,4,5,a的平均数是b,且点P(a-b,4b)在直线2x+y-8=0上,则该样本的标准差是(  )
A.2B.$\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.非零实数a,b满足tanx=x,且a2≠b2,则(a-b)sin(a+b)-(a+b)sin(a-b)=0.

查看答案和解析>>

同步练习册答案