精英家教网 > 高中数学 > 题目详情
5.已知双曲线${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,抛物线${C_2}:{y^2}=4x$,C1与C2有公共的焦点F,C1与C2在第一象限的公共点为M,直线MF的倾斜角为θ,且$cosθ=\frac{1-2a}{3-2a}$,则关于双曲线的离心率的说法正确的是(  )
A.仅有两个不同的离心率e1,e2且e1∈(1,2),e2∈(4,6)
B.仅有两个不同的离心率e1,e2且e1∈(2,3),e2∈(4,6)
C.仅有一个离心率e且e∈(2,3)
D.仅有一个离心率e且e∈(3,4)

分析 由倾斜角的范围可得cosθ∈(-1,1),求得0<a<1,求出抛物线的焦点和准线方程,设M(m,n),m>0.可得|MF|,由双曲线的第二定义可得|MF|=em-a,求得m,再在△MFF'中运用余弦定理,化简整理,可得a的方程,解方程即可得到a的值,进而得到离心率.

解答 解:直线MF的倾斜角为θ,
可得cosθ∈(-1,1],
由题意可得cosθ∈(-1,1),
由$cosθ=\frac{1-2a}{3-2a}$,
可得|$\frac{1-2a}{3-2a}$|<1,
解得0<a<1,
由题意可得F(1,0),准线方程为x=-1,即c=1,
设M(m,n),m>0.
由抛物线的定义可得|MF|=m+1,
由双曲线的第二定义可得,|MF|=em-a=$\frac{m}{a}$-a,
求得m=$\frac{a(1+a)}{1-a}$,
m+1=$\frac{1+{a}^{2}}{1-a}$,
设双曲线的左焦点为F',
由双曲线的第一定义可得|MF'|=2a+m+1,
在△MFF'中,可得-cosθ=$\frac{4+(m+1)^{2}-(2a+m+1)^{2}}{4(m+1)}$=$\frac{1-{a}^{2}}{1+m}$-a=-$\frac{1-2a}{3-2a}$,
$\frac{(1-a)(1-{a}^{2})}{1+{a}^{2}}$=$\frac{-2{a}^{2}+5a-1}{3-2a}$,
即有a2-5a+2=0,
解得a=$\frac{5±\sqrt{17}}{2}$(舍去大于1的数),
可得a=$\frac{5-\sqrt{17}}{2}$,
即有e=$\frac{c}{a}$=$\frac{2}{5-\sqrt{17}}$=$\frac{5+\sqrt{17}}{4}$∈(2,3).
故选:C.

点评 本题考查抛物线的方程和定义、双曲线的定义和性质,主要是离心率的求法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设PA=1,AD=2.
(1)求平面BPC的法向量;
(2)求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=({a+2{{cos}^2}\frac{x}{2}})cos({x+θ})$为奇函数,且$f({\frac{π}{2}})=0$,其中a∈R,θ∈(0,π).
(Ⅰ)求a,θ的值;
(Ⅱ)若$α∈({\frac{π}{2},π})$,$f(\frac{α}{2}+\frac{π}{8})+\frac{2}{5}cos(α+\frac{π}{4})cos2α=0$,求cosα-sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{e^x}{x}(x>0)$,直线l:x-ty-2=0.
(1)若直线l与曲线y=f(x)有且仅有一个公共点,求公共点横坐标的值;
(2)若0<m<n,m+n≤2,求证:f(m)>f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{e^x}{x}(x>0)$,直线l:x-ty-2=0.
(1)若直线l与曲线y=f(x)相切,求切点横坐标的值;
(2)若函数$g(x)=\frac{{3{x^3}}}{e^x}(x>0)$,求证:f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与椭圆${C_2}:\frac{x^2}{4}+{y^2}=1$有相同的离心率,且经过点P(2,-1).
( I)求椭圆C1的标准方程;
( II)设点Q为椭圆C2的下顶点,过点P作两条直线分别交椭圆C1于A、B两点,若直线PQ平分∠APB,求证:直线AB的斜率为定值,并且求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow m=(-1,2)$,向量$\overrightarrow n=(x,-1)$,若$\overrightarrow m∥\overrightarrow n$,则x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,点A(2,$\frac{π}{4}$).
(1)把极坐标方程化为直角坐标方程.
(2)求点A到直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在区间[0,4]上随机取两个数x,y,则xy∈[0,4]的概率是(  )
A.$\frac{2-ln4}{4}$B.$\frac{3-2ln4}{4}$C.$\frac{1+ln4}{4}$D.$\frac{1+2ln4}{4}$

查看答案和解析>>

同步练习册答案