精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)=({a+2{{cos}^2}\frac{x}{2}})cos({x+θ})$为奇函数,且$f({\frac{π}{2}})=0$,其中a∈R,θ∈(0,π).
(Ⅰ)求a,θ的值;
(Ⅱ)若$α∈({\frac{π}{2},π})$,$f(\frac{α}{2}+\frac{π}{8})+\frac{2}{5}cos(α+\frac{π}{4})cos2α=0$,求cosα-sinα的值.

分析 (Ⅰ)f(x)是奇函数,且$f({\frac{π}{2}})=0$,建立等式关系即可求解.
(Ⅱ)根据(Ⅰ)可得f(x)的解析式,根据$f(\frac{α}{2}+\frac{π}{8})+\frac{2}{5}cos(α+\frac{π}{4})cos2α=0$,即可求解cosα-sinα的值.

解答 解:(Ⅰ)∵$f(x)=({a+2{{cos}^2}\frac{x}{2}})cos({x+θ})$是奇函数,
∴$({a+2{{cos}^2}\frac{x}{2}})cos({x+θ})=-({a+2{{cos}^2}\frac{x}{2}})cos({-x+θ})$,
整理得,cosxcosθ=0,即cosθ=0.
又θ∈(0,π),
得$θ=\frac{π}{2}$.
∴$f(x)=-sinx•(a+2{cos^2}\frac{x}{2})$,
由$f({\frac{π}{2}})=0$,得-(a+1)=0,即a=-1.
则f(x)的解析式为:$f(x)=-\frac{1}{2}sin2x$;
(Ⅱ)由(Ⅰ)知$f(x)=-\frac{1}{2}sin2x$.
$f(\frac{α}{2}+\frac{π}{8})+\frac{2}{5}cos(α+\frac{π}{4})cos2α=0$⇒$sin(α+\frac{π}{4})=\frac{4}{5}cos(α+\frac{π}{4})cos2α$.
∵$cos2α=sin(2α+\frac{π}{2})=sin[2(α+\frac{π}{4})]=2sin(α+\frac{π}{4})cos(α+\frac{π}{4})$,
∴$sin(α+\frac{π}{4})=\frac{8}{5}{cos^2}(α+\frac{π}{4})sin(α+\frac{π}{4})$
又$α∈({\frac{π}{2},π})$,
∴$sin(α+\frac{π}{4})=0$或${cos^2}(α+\frac{π}{4})=\frac{5}{8}$.
①由$sin(α+\frac{π}{4})=0⇒α=\frac{3π}{4}$.
∴$cosα-sinα=cos\frac{3π}{4}-sin\frac{3π}{4}=-\sqrt{2}$;
②由${cos^2}(α+\frac{π}{4})=\frac{5}{8}$,$\frac{3π}{4}<α+\frac{π}{4}<\frac{5π}{4}$,
得$cos(α+\frac{π}{4})=-\frac{{\sqrt{5}}}{{2\sqrt{2}}}⇒\frac{1}{{\sqrt{2}}}(cosα-sinα)=-\frac{{\sqrt{5}}}{{2\sqrt{2}}}$.
∴$cosα-sinα=-\frac{{\sqrt{5}}}{2}$.
综上,$cosα-sinα=-\sqrt{2}$或$cosα-sinα=-\frac{{\sqrt{5}}}{2}$.

点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在数列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N*),则$\frac{{a}_{3}}{{a}_{4}}$=(  )
A.$\frac{1}{8}$B.$\frac{1}{6}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某学校研究性学习小组对该校高二(1)班n名学生视力情况进行调查,得到如图所的频率分布直方图,已知视力在4.0~4.4范围内的学生人数为24人,视力在5.0~5.2范围内为正常视力,视力在3.8~4.0范围内为严重近视.
(1)求a,n的值;
(2)学习小组成员发现,学习成绩突出的学生近视的比较多,为了研究学生的视力与学习成绩是否有关系,对班级名次在前10名和后10名的学生进行了调查,得到如表中数据,根据表中的数据,能否在犯错误的概率不超过0.10的前提下认为视力与学习成绩有关系?
(3)若先按照分层抽样在正常视力和严重近视的学生中抽取6人进一步调查他们用眼习惯,再从这6人中随机抽取2人进行保护视力重要性的宣传,求视力正常人数ξ的分布列和期望.
是否近视/年级名次前10名后10名
近视97
不近视13
附:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若复数(1-i)(2+ai)是实数,则实数a等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某学校研究性学习小组对该校高二(1)班n名学生视力情况进行调查,得到如图的频率分布直方图,已知视力在4.0~4.4范围内的学生人数为24人,视力在5.0~5.2范围内为正常视力,视力在3.8~4.0范围内为严重近视.
(1)求a,n的值;
(2)学习小组成员发现,学习成绩突出的学生,迫害视的比较多,为了研究学生的视力与学习成绩是否有关系,对班级名次在前10名和后10名的学生进行了调查,得到如表中数据,根据表中的数据,能否在犯错误的概率不超过0.10的前提下认为视力与学习成绩有关系?
(3)若先按照分层抽样在正常视力和严重近视的学生中抽取6人进一步调查他们用眼习惯,再从这6人中随机抽取2人进行保护视力重要性的宣传,求视力正常和严重近视各1人的概率.
是否近视/年级名次前10名后10名
近视97
不近视13
附:
P(k2≥k0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=Asin(ωx+φ)(A>0,ω>0,$-\frac{π}{2}<φ<\frac{π}{2}$)的图象关于直线x=$\frac{2π}{3}$对称,它的周期是π,则以下命题错误的是(  )
A.f(x)的图象过点$(0,\frac{1}{2})$B.f(x)在$[{\frac{5π}{12},\frac{2π}{3}}]$上是减函数
C.f(x)的一个对称中心是点$({\frac{5π}{12},0})$D.f(x)的最大值为A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等差数列{an}中,${a_2}=4,{a_5}=7,m,n∈{N^+}$,满足$a_1^m+a_2^m+a_3^m+…+a_n^m=a_{n+1}^m$,则n等于(  )
A.1和2B.2和3C.3和4D.2和4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,抛物线${C_2}:{y^2}=4x$,C1与C2有公共的焦点F,C1与C2在第一象限的公共点为M,直线MF的倾斜角为θ,且$cosθ=\frac{1-2a}{3-2a}$,则关于双曲线的离心率的说法正确的是(  )
A.仅有两个不同的离心率e1,e2且e1∈(1,2),e2∈(4,6)
B.仅有两个不同的离心率e1,e2且e1∈(2,3),e2∈(4,6)
C.仅有一个离心率e且e∈(2,3)
D.仅有一个离心率e且e∈(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知样本2,3,4,5,a的平均数是b,且点P(a-b,4b)在直线2x+y-8=0上,则该样本的标准差是(  )
A.2B.$\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

同步练习册答案