7£®Ä³Ñ§Ð£Ñо¿ÐÔѧϰС×é¶Ô¸ÃУ¸ß¶þ£¨1£©°ànÃûѧÉúÊÓÁ¦Çé¿ö½øÐе÷²é£¬µÃµ½ÈçͼËùµÄƵÂÊ·Ö²¼Ö±·½Í¼£¬ÒÑÖªÊÓÁ¦ÔÚ4.0¡«4.4·¶Î§ÄÚµÄѧÉúÈËÊýΪ24ÈË£¬ÊÓÁ¦ÔÚ5.0¡«5.2·¶Î§ÄÚΪÕý³£ÊÓÁ¦£¬ÊÓÁ¦ÔÚ3.8¡«4.0·¶Î§ÄÚΪÑÏÖØ½üÊÓ£®
£¨1£©Çóa£¬nµÄÖµ£»
£¨2£©Ñ§Ï°Ð¡×é³ÉÔ±·¢ÏÖ£¬Ñ§Ï°³É¼¨Í»³öµÄѧÉú½üÊӵıȽ϶࣬ΪÁËÑо¿Ñ§ÉúµÄÊÓÁ¦Óëѧϰ³É¼¨ÊÇ·ñÓйØÏµ£¬¶Ô°à¼¶Ãû´ÎÔÚǰ10ÃûºÍºó10ÃûµÄѧÉú½øÐÐÁ˵÷²é£¬µÃµ½Èç±íÖÐÊý¾Ý£¬¸ù¾Ý±íÖеÄÊý¾Ý£¬ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.10µÄǰÌáÏÂÈÏΪÊÓÁ¦Óëѧϰ³É¼¨ÓйØÏµ£¿
£¨3£©ÈôÏȰ´ÕÕ·Ö²ã³éÑùÔÚÕý³£ÊÓÁ¦ºÍÑÏÖØ½üÊÓµÄѧÉúÖгéÈ¡6È˽øÒ»²½µ÷²éËûÃÇÓÃÑÛϰ¹ß£¬ÔÙ´ÓÕâ6ÈËÖÐËæ»ú³éÈ¡2È˽øÐб£»¤ÊÓÁ¦ÖØÒªÐÔµÄÐû´«£¬ÇóÊÓÁ¦Õý³£ÈËÊý¦ÎµÄ·Ö²¼ÁÐºÍÆÚÍû£®
ÊÇ·ñ½üÊÓ/Äê¼¶Ãû´Îǰ10Ãûºó10Ãû
½üÊÓ97
²»½üÊÓ13
¸½£º
P£¨K2¡Ýk£©0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£¨b+d£©}$£¬n=a+b+c+d£®

·ÖÎö £¨1£©ÓÉÆµÂʺÍΪ1Áз½³ÌÇó³öaµÄÖµ£¬¸ù¾ÝƵÂÊ¡¢ÆµÊýÓëÑù±¾ÈÝÁ¿µÄ¸ÅÐÍÇó³önµÄÖµ£»
£¨2£©ÓÉÁÐÁª±í¼ÆËãK2£¬¶ÔÕÕÁÙ½çÖµ±íµÃ³öÕýÈ·µÄ½áÂÛ£»
£¨3£©ÓÉÌâÒâÖª¦ÎµÄ¿ÉÄÜȡֵ£¬¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊÖµ£¬Ð´³ö¦ÎµÄ·Ö²¼ÁУ¬Çó³öÊýѧÆÚÍûÖµ£®

½â´ð ½â£º£¨1£©ÓÉÆµÂʺÍΪ1£¬µÃ
£¨a+2a+2a+3a+4a+4a+4a£©¡Á0.2=1£¬
½âµÃa=0.25£¬
ÓÉÒÑÖª£¨4a+4a£©¡Á0.2=$\frac{24}{n}$£¬
½âµÃn=60£»
£¨2£©ÓÉÁÐÁª±í¼ÆËãK2=$\frac{20{¡Á£¨9¡Á3-1¡Á7£©}^{2}}{10¡Á10¡Á16¡Á4}$=$\frac{5}{4}$=1.25£¼2.706£¬
ËùÒÔÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.10µÄǰÌáÏ£¬²»ÄÜÈÏΪÊÓÁ¦Óëѧϰ³É¼¨ÓйØÏµ£»
£¨3£©Õý³£ÊÓÁ¦Îª6ÈË£¬ÑÏÖØ½üÊÓΪ3ÈË£¬ÒÀÌâÒâ³éÈ¡µÄ6ÈËÖУ¬Õý³£ÊÓÁ¦4ÈË£¬ÑÏÖØ½üÊÓ2ÈË£¬
´Ó6ÈËÖÐÈÎÈ¡2ÈË£¬ÊÓÁ¦Õý³£ÈËÊý¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£»
ÔòP£¨¦Î=0£©=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{1}{15}$£¬
P£¨¦Î=1£©=$\frac{{C}_{2}^{1}{•C}_{4}^{1}}{{C}_{6}^{2}}$=$\frac{8}{15}$£¬
P£¨¦Î=2£©=$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{6}{15}$=$\frac{2}{5}$£»
¡à¦ÎµÄ·Ö²¼ÁÐΪ£¬

 ¦Î 0 1 2
 P 
$\frac{1}{15}$
 
$\frac{8}{15}$
 
$\frac{2}{5}$
ÊýѧÆÚÍûΪE£¨¦Î£©=0¡Á$\frac{1}{15}$+1¡Á$\frac{8}{15}$+2¡Á$\frac{2}{5}$=$\frac{4}{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÆµÂÊ·Ö²¼Ö±·½Í¼Óë¶ÀÁ¢ÐÔ¼ìÑéÎÊÌ⣬Ҳ¿¼²éÁËÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁУ¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªcos¦Á=-$\frac{3}{5}$£¬¦ÁÊǵÚÈýÏóÏ޵Ľǣ¬Ôòsin¦Á=£¨¡¡¡¡£©
A£®-$\frac{3}{5}$B£®$\frac{4}{5}$C£®-$\frac{4}{5}$D£®$\frac{4}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®µÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬¹ØÓÚxµÄ²»µÈʽ $\frac{d}{2}$x2+£¨a1-$\frac{d}{2}$£©x+c¡Ý0µÄ½â¼¯Îª[0£¬20]£¬ÔòʹÊýÁÐ{an}µÄǰnÏîºÍSn×î´óµÄÕýÕûÊýnµÄÖµÊÇ10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈçͼËùʾ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDΪ¾ØÐΣ¬PA¡ÍÆ½ÃæABCD£¬µãEÔÚÏß¶ÎPCÉÏ£¬PC¡ÍÆ½ÃæBDE£¬ÉèPA=1£¬AD=2£®
£¨1£©ÇóÆ½ÃæBPCµÄ·¨ÏòÁ¿£»
£¨2£©Çó¶þÃæ½ÇB-PC-AµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=x3-$\frac{3}{2}$x2£¬·½³Ìf2£¨x£©+tf£¨x£©+1=0ÓÐËĸöʵÊý¸ù£¬ÔòʵÊýtµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬$\frac{5}{2}$£©B£®£¨-$\frac{5}{2}$£¬+¡Þ£©C£®£¨$\frac{5}{2}$£¬+¡Þ£©D£®£¨-1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®É躯Êýf£¨x£©=$\sqrt{{e}^{x}+ax-2}$£¬ÆäÖÐa£¾0£¬Èô´æÔÚʵÊýx0¡Ê[1£¬2]£¬Ê¹f[f£¨x0£©]=x0£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨0£¬3-e]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈçͼËùʾ£¬ÓÃA1¡¢A2¡¢A3Èý¸öÔª¼þÁ¬½Ó³ÉÒ»¸öϵͳ£¬A1¡¢A2¡¢A3ÄÜ·ñÕý³£¹¤×÷Ï໥¶ÀÁ¢£¬µ±A1Õý³£¹¤×÷ÇÒA2¡¢A3ÖÁÉÙÓÐÒ»¸öÕý³£¹¤×÷ʱ£¬ÏµÍ³Õý³£¹¤×÷£¬ÒÑÖªA1¡¢A2¡¢A3Õý³£¹¤×÷µÄ¸ÅÂʾùΪ$\frac{2}{3}$£¬ÔòϵͳÕý³£¹¤×÷µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{4}{27}$B£®$\frac{8}{27}$C£®$\frac{16}{27}$D£®$\frac{20}{27}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êý$f£¨x£©=£¨{a+2{{cos}^2}\frac{x}{2}}£©cos£¨{x+¦È}£©$ÎªÆæº¯Êý£¬ÇÒ$f£¨{\frac{¦Ð}{2}}£©=0$£¬ÆäÖÐa¡ÊR£¬¦È¡Ê£¨0£¬¦Ð£©£®
£¨¢ñ£©Çóa£¬¦ÈµÄÖµ£»
£¨¢ò£©Èô$¦Á¡Ê£¨{\frac{¦Ð}{2}£¬¦Ð}£©$£¬$f£¨\frac{¦Á}{2}+\frac{¦Ð}{8}£©+\frac{2}{5}cos£¨¦Á+\frac{¦Ð}{4}£©cos2¦Á=0$£¬Çócos¦Á-sin¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÏòÁ¿$\overrightarrow m=£¨-1£¬2£©$£¬ÏòÁ¿$\overrightarrow n=£¨x£¬-1£©$£¬Èô$\overrightarrow m¡Î\overrightarrow n$£¬Ôòx=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸