精英家教网 > 高中数学 > 题目详情
17.已知cosα=-$\frac{3}{5}$,α是第三象限的角,则sinα=(  )
A.-$\frac{3}{5}$B.$\frac{4}{5}$C.-$\frac{4}{5}$D.$\frac{4}{3}$

分析 利用同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα的值.

解答 解:∵cosα=-$\frac{3}{5}$,α是第三象限的角,则sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{4}{5}$,
故选:C.

点评 本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某学习小组、男女生共8人,现从男生中选2人,从女生中选1人,分别去做3种不同的工作,共有90种不同的选法,则男、女生人数为(  )
A.男2人,女6人B.男3人,女5人C.男5人,女3人D.男6人,女2人

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知中心在原点椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,其中一个顶点是(0,-$\sqrt{3}$)
(1)求椭圆C的方程;
(2)若过点P(-2,1)的直线l与椭圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知A(0,1),B、C为椭圆x2+my2=m(m>1)上的三个不同点,AB⊥AC.
(Ⅰ)当椭圆长轴长为4时,求椭圆的离心率e;
(Ⅱ)求△ABC面积的最大值f(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知θ是直线2x+2y-1=0的倾斜角,则sinθ的值是(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,圆O内有一个内接三角形ABC,且直径AB=2,∠ABC=45°,在圆O内随机撒一粒黄豆,则它落在三角形ABC内(阴影部分)的概率是(  )
A.$\frac{1}{2π}$B.$\frac{\sqrt{2}}{2π}$C.$\frac{\sqrt{3}}{2π}$D.$\frac{1}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,△PAB是等边三角形,AC⊥BC,且AC=BC=2,O、D分别是AB,PB的中点.
(1)求证:PA∥平面COD;
(2)求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在数列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N*),则$\frac{{a}_{3}}{{a}_{4}}$=(  )
A.$\frac{1}{8}$B.$\frac{1}{6}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某学校研究性学习小组对该校高二(1)班n名学生视力情况进行调查,得到如图所的频率分布直方图,已知视力在4.0~4.4范围内的学生人数为24人,视力在5.0~5.2范围内为正常视力,视力在3.8~4.0范围内为严重近视.
(1)求a,n的值;
(2)学习小组成员发现,学习成绩突出的学生近视的比较多,为了研究学生的视力与学习成绩是否有关系,对班级名次在前10名和后10名的学生进行了调查,得到如表中数据,根据表中的数据,能否在犯错误的概率不超过0.10的前提下认为视力与学习成绩有关系?
(3)若先按照分层抽样在正常视力和严重近视的学生中抽取6人进一步调查他们用眼习惯,再从这6人中随机抽取2人进行保护视力重要性的宣传,求视力正常人数ξ的分布列和期望.
是否近视/年级名次前10名后10名
近视97
不近视13
附:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c(b+d)}$,n=a+b+c+d.

查看答案和解析>>

同步练习册答案