精英家教网 > 高中数学 > 题目详情
12.已知θ是直线2x+2y-1=0的倾斜角,则sinθ的值是(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.-1

分析 由题意可得:tanθ=-$\frac{2}{2}$=-1,θ∈[0,π),解得θ,即可得出.

解答 解:tanθ=-$\frac{2}{2}$=-1,θ∈[0,π),
∴$θ=\frac{3π}{4}$.
∴sin$\frac{3π}{4}$=$\frac{\sqrt{2}}{2}$.
故选:B.

点评 本题考查了直线倾斜角与斜率的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若函数f(x)在R上可导,且满足f(x)<x f′(x),则(  )
A.2 f(1)<f(2)B.2 f(1)>f(2)C.2 f(1)=f(2)D.f(1)=f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=log4$\frac{{{x^2}+ax+b}}{{{x^2}+x+1}}$的定义域为R,且y=f(x+1)的图象过点A(-1,0).
(1)求实数b的值;
(2)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围;
(3)是否存在实数a,使函数f(x)在R上的最大值为1-log43?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}的前n项和为Sn,Sn=2an+n,则a1=-1,{an}的通项公式an=1-2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知z=1+i,则${z^2}+\overline{z}$=(  )
A.1+2iB.1-2iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知cosα=-$\frac{3}{5}$,α是第三象限的角,则sinα=(  )
A.-$\frac{3}{5}$B.$\frac{4}{5}$C.-$\frac{4}{5}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=Asinωx(A>0,ω>0)的图象如图所示,则A,ω的值分别是3,2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法正确的是(  )
A.?x,y∈R,若x+y≠0,则x≠1且y≠-1
B.命题“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
C.a∈R,“$\frac{1}{a}$<1”是“a>1”的必要不充分条件
D.“若am2<bm2,则a<b”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=x3-$\frac{3}{2}$x2,方程f2(x)+tf(x)+1=0有四个实数根,则实数t的取值范围是(  )
A.(-∞,$\frac{5}{2}$)B.(-$\frac{5}{2}$,+∞)C.($\frac{5}{2}$,+∞)D.(-1,+∞)

查看答案和解析>>

同步练习册答案