精英家教网 > 高中数学 > 题目详情
1.下列说法正确的是(  )
A.?x,y∈R,若x+y≠0,则x≠1且y≠-1
B.命题“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
C.a∈R,“$\frac{1}{a}$<1”是“a>1”的必要不充分条件
D.“若am2<bm2,则a<b”的逆命题为真命题

分析 A,判断原命题逆否命题的真假,可判断;
B,写出原命题的否定,可判断;
C,根据充要条件的定义,可判断
D,写出原命题的逆命题,可判断

解答 解:对于A,?x,y∈R,若x+y≠0,则x≠1且y≠-1的逆否命题为:?x,y∈R,若x=1或y=-1,则x+y=0,为假命题,故①错误;
对于B,命题“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3≥0”,故B错误;
对于C,a∈R,“$\frac{1}{a}$<1”?“a<0,或a>1”是“a>1”的必要不充分条件,故C正确;
对于B,“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”为假命题,故D错误;,
故选:C

点评 本题以命题的真假判断与应用为载体,考查四种命题,命题的否定,不等式的基本性质,充要条件等知识点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知?(x)=sin (x+$\frac{π}{6}$),若cos α=$\frac{3}{5}$(0<α<$\frac{π}{2}$),则f(α+$\frac{π}{12}$)=$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知θ是直线2x+2y-1=0的倾斜角,则sinθ的值是(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,△PAB是等边三角形,AC⊥BC,且AC=BC=2,O、D分别是AB,PB的中点.
(1)求证:PA∥平面COD;
(2)求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.四面体D-ABC中,AB=BC,在侧面DAC中,中线AN⊥中线DM,且DB⊥AN.
(1)求证:MN∥面DAB;
(2)平面ACD⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在数列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N*),则$\frac{{a}_{3}}{{a}_{4}}$=(  )
A.$\frac{1}{8}$B.$\frac{1}{6}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在正方形ABCD中,点E在边AD上(端点除外),现将△ABE沿直线BE翻折至△A′BE,连结A′C、A′D,记二面角A′-BE-C为α(0<α<π),则(  )
A.存在α,使得A′E⊥面A′BCB.存在α,使得A′B⊥面A′CD
C.存在α,使得A′E⊥面A′CDD.存在α,使得A′B⊥面A′DE

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若Sn为等差数列{an}的前n项和,且a1=1,S10=55.记bn=[lnan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.则数列{bn}的前2017项和为4944.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某学校研究性学习小组对该校高二(1)班n名学生视力情况进行调查,得到如图的频率分布直方图,已知视力在4.0~4.4范围内的学生人数为24人,视力在5.0~5.2范围内为正常视力,视力在3.8~4.0范围内为严重近视.
(1)求a,n的值;
(2)学习小组成员发现,学习成绩突出的学生,迫害视的比较多,为了研究学生的视力与学习成绩是否有关系,对班级名次在前10名和后10名的学生进行了调查,得到如表中数据,根据表中的数据,能否在犯错误的概率不超过0.10的前提下认为视力与学习成绩有关系?
(3)若先按照分层抽样在正常视力和严重近视的学生中抽取6人进一步调查他们用眼习惯,再从这6人中随机抽取2人进行保护视力重要性的宣传,求视力正常和严重近视各1人的概率.
是否近视/年级名次前10名后10名
近视97
不近视13
附:
P(k2≥k0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879

查看答案和解析>>

同步练习册答案