精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=x3-$\frac{3}{2}$x2,方程f2(x)+tf(x)+1=0有四个实数根,则实数t的取值范围是(  )
A.(-∞,$\frac{5}{2}$)B.(-$\frac{5}{2}$,+∞)C.($\frac{5}{2}$,+∞)D.(-1,+∞)

分析 判断f(x)的单调性,作出f(x)的函数图象,得出f(x)=m的根的分别情况,从而得出关于m的方程的根的分别区间,列不等式解出t.

解答 解:f′(x)=3x2-3x=3x(x-1),
∴当x<0或x>1时f′(x)>0,当0<x<1时,f′(x)<0,
∴f(x)在(-∞,0)上单调递增,在(0,1)上单调递减,在(1,+∞)上单调递增,
∴当x=0时,f(x)取得极大值f(0)=0,当x=1时,f(x)取得极小值f(1)=-$\frac{1}{2}$.
作出f(x)的函数图象如图所示:

设f(x)=m,由图象可知:
当m<-$\frac{1}{2}$或m>0时,方程f(x)=m只有1解,
当m=-$\frac{1}{2}$或m=0时,方程f(x)=m有2解,
当-$\frac{1}{2}$<m<0时,方程f(x)=m有3解,
∵程f2(x)+tf(x)+1=0有四个实数根,
∴关于m的方程m2+tm+1=0在(-∞,-$\frac{1}{2}$)和(-$\frac{1}{2}$,0)上各有1个零点.
∴$\frac{1}{4}$-$\frac{1}{2}$t+1<0,
解得:t>$\frac{5}{2}$.
故选C.

点评 本题考查了方程根与函数图象的关系,函数的单调性判断与极值计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知θ是直线2x+2y-1=0的倾斜角,则sinθ的值是(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在正方形ABCD中,点E在边AD上(端点除外),现将△ABE沿直线BE翻折至△A′BE,连结A′C、A′D,记二面角A′-BE-C为α(0<α<π),则(  )
A.存在α,使得A′E⊥面A′BCB.存在α,使得A′B⊥面A′CD
C.存在α,使得A′E⊥面A′CDD.存在α,使得A′B⊥面A′DE

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若Sn为等差数列{an}的前n项和,且a1=1,S10=55.记bn=[lnan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.则数列{bn}的前2017项和为4944.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$θ∈(\frac{π}{2},π)$,则$\sqrt{1-2sin(π+θ)sin(\frac{3π}{2}-θ)}$=(  )
A.sinθ-cosθB.cosθ-sinθC.±(sinθ-cosθ)D.sinθ+cosθ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某学校研究性学习小组对该校高二(1)班n名学生视力情况进行调查,得到如图所的频率分布直方图,已知视力在4.0~4.4范围内的学生人数为24人,视力在5.0~5.2范围内为正常视力,视力在3.8~4.0范围内为严重近视.
(1)求a,n的值;
(2)学习小组成员发现,学习成绩突出的学生近视的比较多,为了研究学生的视力与学习成绩是否有关系,对班级名次在前10名和后10名的学生进行了调查,得到如表中数据,根据表中的数据,能否在犯错误的概率不超过0.10的前提下认为视力与学习成绩有关系?
(3)若先按照分层抽样在正常视力和严重近视的学生中抽取6人进一步调查他们用眼习惯,再从这6人中随机抽取2人进行保护视力重要性的宣传,求视力正常人数ξ的分布列和期望.
是否近视/年级名次前10名后10名
近视97
不近视13
附:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数z=1+$\frac{2-i}{2+4i}$(i是虚数单位)在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某学校研究性学习小组对该校高二(1)班n名学生视力情况进行调查,得到如图的频率分布直方图,已知视力在4.0~4.4范围内的学生人数为24人,视力在5.0~5.2范围内为正常视力,视力在3.8~4.0范围内为严重近视.
(1)求a,n的值;
(2)学习小组成员发现,学习成绩突出的学生,迫害视的比较多,为了研究学生的视力与学习成绩是否有关系,对班级名次在前10名和后10名的学生进行了调查,得到如表中数据,根据表中的数据,能否在犯错误的概率不超过0.10的前提下认为视力与学习成绩有关系?
(3)若先按照分层抽样在正常视力和严重近视的学生中抽取6人进一步调查他们用眼习惯,再从这6人中随机抽取2人进行保护视力重要性的宣传,求视力正常和严重近视各1人的概率.
是否近视/年级名次前10名后10名
近视97
不近视13
附:
P(k2≥k0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x∈z|0≤x<3},B={x∈R|x2≤9},则A∩B=(  )
A.{1,2}B.{0,1,2}C.{x|0≤x<3}D.{x|0≤x≤3}

查看答案和解析>>

同步练习册答案