分析 关于x的不等式 $\frac{d}{2}$x2+(a1-$\frac{d}{2}$)x+c≥0的解集为[0,20],可得:$\frac{d}{2}$<0,c=0,0+20=-$\frac{{a}_{1}-\frac{d}{2}}{\frac{d}{2}}$,化为:2a1+19d=0,a1+a20=0,a1>0.可得a10+a11=0,a10>0,a11<0.即可得出.
解答 解:∵关于x的不等式 $\frac{d}{2}$x2+(a1-$\frac{d}{2}$)x+c≥0的解集为[0,20],
∴$\frac{d}{2}$<0,c=0,0+20=-$\frac{{a}_{1}-\frac{d}{2}}{\frac{d}{2}}$,化为:2a1+19d=0,∴a1+a20=0,a1>0.
∴a10+a11=0,∴a10>0,a11<0.
∴使数列{an}的前n项和Sn最大的正整数n的值是10.
故答案为:10.
点评 本题考查了等差数列的通项公式、方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{6}$ | C. | $\frac{3}{8}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在α,使得A′E⊥面A′BC | B. | 存在α,使得A′B⊥面A′CD | ||
| C. | 存在α,使得A′E⊥面A′CD | D. | 存在α,使得A′B⊥面A′DE |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 是否近视/年级名次 | 前10名 | 后10名 |
| 近视 | 9 | 7 |
| 不近视 | 1 | 3 |
| P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1和2 | B. | 2和3 | C. | 3和4 | D. | 2和4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com