精英家教网 > 高中数学 > 题目详情
1.已知点P(3,-2),则点P到直线l:3x+4y-25=0的距离为$\frac{24}{5}$.

分析 利用点到直线的距离公式即可得出.

解答 解:点P到直线l:3x+4y-25=0的距离=$\frac{|3×3-2×4-25|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{24}{5}$.
故答案为:$\frac{24}{5}$.

点评 本题考查了点到直线的距离公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}前n项和为Sn,且满足a1=1,4Sn=anan+1+1.
(1)计算a2、a3、a4的值,并猜想{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与椭圆${C_2}:\frac{x^2}{4}+{y^2}=1$有相同的离心率,且经过点P(2,-1).
( I)求椭圆C1的标准方程;
( II)设点Q为椭圆C2的下顶点,过点P作两条直线分别交椭圆C1于A、B两点,若直线PQ平分∠APB,求证:直线AB的斜率为定值,并且求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.求值:25${\;}^{\frac{3}{2}}$=125;27${\;}^{\frac{2}{3}}$=9;($\frac{36}{49}$)${\;}^{\frac{3}{2}}$=$\frac{216}{343}$;($\frac{25}{4}$)${\;}^{-\frac{3}{2}}$=$\frac{8}{125}$;$\root{4}{8×\sqrt{{9}^{\frac{3}{2}}}}$=$\root{8}{1{2}^{3}}$;2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,点A(2,$\frac{π}{4}$).
(1)把极坐标方程化为直角坐标方程.
(2)求点A到直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知{an}为等比数列且满足a6-a2=30,a3-a1=3,则数列{an}的前5项和S5=(  )
A.15B.31C.40D.121

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,三边长为连续的正整数,且最大角是最小角的2倍,则此三角形的三边长为(  )
A.1,2,3B.2,3,4C.3,4,5D.4,5,6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=|2x+$\frac{3}{a}$|+2|x-a|
(1)若a=3,求f(x)≥4的解集;
(2)对任意a∈(0,+∞),任意x∈R,f(x)≥m恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且an=2-2Sn(n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=log3(1-Sn)(n∈N*),若$\frac{1}{{{b_2}{b_3}}}+\frac{1}{{{b_3}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}=\frac{25}{51}$,求自然数n的值.

查看答案和解析>>

同步练习册答案