精英家教网 > 高中数学 > 题目详情
7.打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据,
患心脏病未患心脏病合计
每一晚都打鼾30224254
不打鼾2413551379
合计5415791633
根据独立性检验原理,能否在犯错误的概率不超过0.001的前提下认为每一晚都打鼾与患心脏病有关系.

分析 根据列联表中的数据,计算K2,对照临界值得出结论.

解答 解:根据列联表中的数据,计算
K2=$\frac{1633{×(30×1355-24×224)}^{2}}{254×1379×54×1579}$≈68.033>10.828,
因此,在犯错误的概率不超过0.001的前提下,
认为每一晚都打鼾与患心脏病有关系.

点评 本题考查了列联表和独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图所示是求等比数列前n项和的流程图,则空白处应填(  )
A.q=1B.q≠1C.q>1D.q<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}中,a2=4,a5=7,m,n∈N+,满足a1m+a2m+a3m+…+anm=an+1m,则n等于(  )
A.1和2B.2和3C.3和4D.2和4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,a、b、c分别是角A、B、C的对边.若$\frac{sinC}{sinA}=2$,b2-a2=$\frac{3}{2}$ac,则cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知tan(π+α)=3,求(sinα+cosα)2+$\frac{4sinα-2cosα}{cosα+3sinα}$的值;
(2)已知cos($\frac{π}{6}$-θ)=a(|a|≤1),求cos($\frac{5π}{6}$+θ)和sin($\frac{2π}{3}$-θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若关于x的不等式2x3+3x2-12x+4≤$\frac{4m{e}^{x}+2x}{{e}^{x}}$在[-2,+∞)上有解,则实数m 的最小值为(  )
A.-$\frac{3}{4}$-$\frac{1}{e}$B.-$\frac{3}{4}$-$\frac{1}{2e}$C.-$\frac{4}{3}$-$\frac{1}{e}$D.-$\frac{4}{3}$-$\frac{1}{2e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若无论m为何值时,直线mx-y-(2m-1)=0总过一个定点,则该定点的坐标为(2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C的两焦点为F1(-2$\sqrt{2}$,0),F2(2$\sqrt{2}$,0),离心率e=$\frac{\sqrt{6}}{3}$.
(1)求此椭圆C的方程;
(2)过点M(0,t)的直线l(斜率存在时)与椭圆C交于P,Q两点,设D为椭圆C与y轴负半轴的交点,且|$\overrightarrow{DP}$|=|$\overrightarrow{DQ}$|.求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(4,3),且$\overrightarrow{a}$⊥(t$\overrightarrow{a}$+$\overrightarrow{b}$),则实数t=-2.

查看答案和解析>>

同步练习册答案