精英家教网 > 高中数学 > 题目详情
设函数f (x)=x3+ax2-(2a+3)x+a2,a∈R.
(Ⅰ) 若x=1是f (x)的极大值点,求实数a的取值范围;
(Ⅱ) 设函数g(x)=bx2-(2b+1)x+ln x (b≠0,b∈R),若函数f (x)有极大值,且g(x)的极大值点与f (x)的极大值点相同.当a>-3时,求证:g(x)的极小值小于-1.
分析:(I)求出f(x)的导数,根据x=1是f (x)的极大值点,令导函数等于0的另一个根大于极大值点x=1,列出不等式,求出实数a的取值范围.
(II)求出f(x)的导函数,令导函数为0,求出两个根,据已知条件,两个根不等,根据a的范围,求出f(x)的极大值,求出g(x)的导数,求出g(x)的极大值,根据已知列出方程,求出极小值,得证.
解答:解:(Ⅰ)  f′(x)=3x2+2ax-(2a+3)=(x-1)(3x+2a+3).
由于x=1是f (x)的极大值点,
-
2a+3
3
>1

即a<-3    
(Ⅱ) f′(x)=3x2+2ax-(2a+3)=(x-1)(3x+2a+3).
g′(x)=
1
x
+2bx-(2b+1)=
(x-1)(2bx-1)
x

由于函数f (x)有极大值,故-
2a+3
3
≠1
,即a≠-3.
当 a>-3时,即-
2a+3
3
<1
,则f (x)的极大值点x=-
2a+3
3

所以,g(x)的极大值点x=
1
2b
,极小值点为x=1.
所以,
-
2a+3
3
=
1
2b
0<
1
2b
<1
?
-
2a+3
3
=
1
2b
b>
1
2

此时,g(x)的极小值g(1)=b-(2b+1)=-1-b<-
3
2
<-1.
点评:利用导数求函数的极值时,令导数等于0,然后判断根左右两边的导函数符号,导函数符号先正后负,根为极大值;导函数符号先负后正,根为极小值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案