| A. | $\frac{a^3}{6}$ | B. | $\frac{a^3}{12}$ | C. | $\frac{{\sqrt{3}}}{12}{a^3}$ | D. | $\frac{\sqrt{2}}{12}{a}^{3}$ |
分析 由题意可得:三棱锥B-ACD是一个正四面体.如图所示,进而算出高BO,即可计算出体积.
解答 解:由题意可得:三棱锥B-ACD是一个棱长为a的正四面体.如图所示:![]()
过B点作BO⊥底面ACD,则点O是底面的中心,可知AO=$\frac{2}{3}×\frac{\sqrt{3}}{2}a=\frac{\sqrt{3}}{3}a$.
在Rt△ABO中,由勾股定理得BO=$\sqrt{A{B}^{2}-A{O}^{2}}$=$\sqrt{{a}^{2}-(\frac{\sqrt{3}}{3}a)^{2}}$=$\frac{\sqrt{6}}{3}a$.
∴V=$\frac{1}{3}×\frac{1}{2}×a×a×sin60°×\frac{\sqrt{6}}{3}a$=$\frac{\sqrt{2}}{12}{a}^{3}$.
故选:D.
点评 本题考查三棱锥的体积的求法,考查三棱锥、折叠等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1,1,0,0 | B. | 1,0,1,0 | C. | 0,1,0,1 | D. | 1,0,0,1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\overrightarrow a}{{|{\overrightarrow a}|}}+\frac{\overrightarrow b}{{|{\overrightarrow b}|}}$ | B. | $\frac{\overrightarrow a+\overrightarrow b}{{|{\overrightarrow a+\overrightarrow b}|}}$ | ||
| C. | $\frac{{|{\overrightarrow b}|\overrightarrow a-|{\overrightarrow a}|\overrightarrow b}}{{|{\overrightarrow a}|+|{\overrightarrow b}|}}$ | D. | $λ(\frac{\overrightarrow a}{{|{\overrightarrow a}|}}+\frac{\overrightarrow b}{{|{\overrightarrow b}|}})$,λ由$\overrightarrow{OM}$确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com