精英家教网 > 高中数学 > 题目详情
10.设x>0,则$y=x+\frac{4}{x^2}$的最小值为(  )
A.2B.$2\sqrt{2}$C.3D.$3\sqrt{2}$

分析 根据题意,将函数的解析式变形可得$y=x+\frac{4}{x^2}$=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{{x}^{2}}$,由基本不等式分析可得y=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{{x}^{2}}$≥3$\root{3}{\frac{x}{2}•\frac{x}{2}•\frac{4}{{x}^{2}}}$,化简即可得答案.

解答 解:根据题意,$y=x+\frac{4}{x^2}$=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{{x}^{2}}$,
又由x>0,则y=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{{x}^{2}}$≥3$\root{3}{\frac{x}{2}•\frac{x}{2}•\frac{4}{{x}^{2}}}$=3,
即函数$y=x+\frac{4}{x^2}$的最小值为3;
故选:C.

点评 本题考查基本不等式的应用,关键是对函数解析式变形,配凑基本不等式的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,设A(0,b),B(a,0),F1,F2,分别是椭圆的左右焦点,且S${\;}_{△AB{F}_{2}}$=$\frac{\sqrt{3}}{2}$
(1)求椭圆C的方程;
(2)过F1的直线与以F2为焦点,顶点在坐标原点的抛物线交于P,Q两点,设$\overrightarrow{{F}_{1}P}$=λ$\overrightarrow{{F}_{1}Q}$,若λ∈[2,3],求△F2PQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,角B,C均为锐角,且sinB<cosC,则△ABC的形状是(  )
A.直角三角形B.锐角三角形C.等腰三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知边长为a的菱形ABCD中,∠ABC=60°,将该菱形沿对角线AC折起,使BD=a,则三棱锥D-ABC的体积为(  )
A.$\frac{a^3}{6}$B.$\frac{a^3}{12}$C.$\frac{{\sqrt{3}}}{12}{a^3}$D.$\frac{\sqrt{2}}{12}{a}^{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.编号为1,2,3,4,5的5人,入座编号也为1,2,3,4,5的5个座位,至多有2人对号入座的坐法种数为(  )
A.120B.130C.90D.109

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设点A(2,-3),B(-3,-2),直线l过P(1,1)且与线段AB相交,则l的斜率k的取值范围是(  )
A.{k|k≥$\frac{3}{4}$或k≤-4}B.{k|-4≤k≤$\frac{3}{4}$}C.{k|-$\frac{3}{4}$≤k<4}D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.小强和小华两位同学约定下午在大良钟楼公园喷水池旁见面,约定谁先到后必须等10分钟,这时若另一人还没有来就可以离开.如果小强是1:20-2:00到达的,假设小华在1点到2点内到达,且小华在 1点到2点之间何时到达是等可能的,则他们会面的概率是$\frac{5}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知方程x2+y2+2x-6y+m=0.
(1)若该方程表示的图形是圆,求m的取值范围;
(2)点M(-1,4)在该圆上,求圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知f(x)=$\sqrt{\frac{1-x}{1+x}}$,α∈($\frac{π}{2}$,π),求f(cosα)+f(-cosα);
(2)求值:sin50°(1+$\sqrt{3}$tan10°).

查看答案和解析>>

同步练习册答案