在平面直角坐标系xoy中,以点P为圆心的圆与圆x2+y2-2y=0外切且与x轴相切(两切点不重合).
(1)求动点P的轨迹方程;
(2)若直线mx一y+2m+5=0(m∈R)与点P的轨迹交于A、B两点,问:当m变化时,以线段AB为直径的圆是否会经过定点?若会,求出此定点;若不会,说明理由.
(1)
(
>
);(2)会定点为
.
解析试题分析:本题主要考查两圆的位置关系、直线与抛物线的位置关系等数学知识,考查学生的分析问题解决问题的能力、转化能力和计算能力.第一问,由于以点p为圆心的圆与x轴相切,通过数形结合得
且
,解出x与y的关系,即所求的P点的轨迹方程;第二问,直线与抛物线方程联立,消参得到关于x的方程,得到
,
,先写出以线段AB为直径的圆的方程,将
,
代入后,得到关于m的方程,由于m∈R,所以得到
,解出唯一解
,所以圆过定点(2,1).
试题解析:⑴设
,由题意知
且
,得![]()
故所求点
的轨迹方程为
(
>
) 5分
⑵设
、
,将
代入
得![]()
∴
7分
而以线段
为直径的圆的方程为
,
即
,
得
, 10分
整理成关于
的方程 ![]()
由于以上关于
的方程有无数解,故
,
由以上方程构成的方程组有唯一解
.
由此可知,以线段
为直径的圆必经过定点
. 13分
考点:1.抛物线的标准方程;2.直线与抛物线的位置关系;3.两个圆的位置关系.
科目:高中数学 来源: 题型:解答题
已知圆
,若椭圆
的右顶点为圆
的圆心,离心率为
.
(1)求椭圆C的方程;
(2)若存在直线
,使得直线
与椭圆
分别交于
两点,与圆
分别交于
两点,点
在线段
上,且
,求圆
的半径
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的方程为
=1(a>b>0),双曲线
=1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1.又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B(如图).![]()
(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;
(2)当
=λ
,求λ的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
抛物线y2=2px的准线方程为x=-2,该抛物线上的每个点到准线x=-2的距离都与到定点N的距离相等,圆N是以N为圆心,同时与直线l1:y=x和l2:y=-x相切的圆,
(1)求定点N的坐标;
(2)是否存在一条直线l同时满足下列条件:
①l分别与直线l1和l2交于A、B两点,且AB中点为E(4,1);
②l被圆N截得的弦长为2.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知过曲线
上任意一点
作直线
的垂线,垂足为
,且
.
⑴求曲线
的方程;
⑵设
、
是曲线
上两个不同点,直线
和
的倾斜角分别为
和
,
当
变化且
为定值
时,证明直线
恒过定点,
并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x2+y2=
(c是椭圆的半焦距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.![]()
(1)若椭圆C经过两点
、
,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求
·
的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
=1的离心率为2,焦点到渐近线的距离等于
,过右焦点F2的直线l交双曲线于A、B两点,F1为左焦点.
(1)求双曲线的方程;
(2)若△F1AB的面积等于6
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.![]()
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若
=2
,
·
=
,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M在点N的右侧),且|MN|=3,已知椭圆D:
+
=1(a>b>0)的焦距等于2|ON|,且过点(
,
).![]()
(1)求圆C和椭圆D的方程;
(2)若过点M斜率不为零的直线l与椭圆D交于A、B两点,求证:直线NA与直线NB的倾斜角互补.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com