精英家教网 > 高中数学 > 题目详情

已知椭圆C的方程为=1(a>b>0),双曲线=1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1.又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B(如图).

(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;
(2)当=λ,求λ的最大值.

(1)+y2=1(2)-1

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

椭圆的方程为,离心率为,且短轴一端点和两焦点构成的三角形面积为1,抛物线的方程为,抛物线的焦点F与椭圆的一个顶点重合.
(1)求椭圆和抛物线的方程;
(2)过点F的直线交抛物线于不同两点A,B,交y轴于点N,已知的值.
(3)直线交椭圆于不同两点P,Q,P,Q在x轴上的射影分别为P′,Q′,满足(O为原点),若点S满足,判定点S是否在椭圆上,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).
(1)求椭圆的方程;
(2)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆E:=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.

(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设x1=2,x2,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(xy1),B(x2,y2).

(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中点在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.

(1)求椭圆C的方程;
(2)己知点P(2,3),Q(2,-3)在椭圆上,点A、B是椭圆上不同的两个动点,且满足APQ=BPQ,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xoy中,以点P为圆心的圆与圆x2+y2-2y=0外切且与x轴相切(两切点不重合).
(1)求动点P的轨迹方程;
(2)若直线mx一y+2m+5=0(m∈R)与点P的轨迹交于A、B两点,问:当m变化时,以线段AB为直径的圆是否会经过定点?若会,求出此定点;若不会,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C交于两点A和B,设P为椭圆上一点,且满足·(O为坐标原点),当 时,求实数t取值范围。

查看答案和解析>>

同步练习册答案