已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).
(1)求椭圆的方程;
(2)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.
(1);(2)对称.
解析试题分析:(1)由圆方程可知圆心为,即,又因为离心率为,可得,根据椭圆中关系式,可求,椭圆方程即可写出;(2)由椭圆方程可知,将代入椭圆方程可得,可得,设直线,设,,然后和椭圆方程联立,消掉(或)得到关于的一元二次方程,再根据韦达定理得出根与系数的关系,可得两直线的斜率.若直线是关于直线对称时两直线倾斜角互补,所以斜率互为相反数,把求得的两直线斜率相加若为0,则说明两直线对称,否则不对称.
试题解析:(1)由题意得, 由可得, 所以
所以椭圆的方程为. 4分
(2)由题意可得点
所以由题意可设直线,
设
由得
由题意可得,即且
6分
因为 8分
, 10分
所以直线关于直线对称 12分.
考点:1.椭圆的基础知识;2.直线与椭圆的位置关系;3.二次方程根与系数的关系.
科目:高中数学 来源: 题型:解答题
已知抛物线,直线,是抛物线的焦点。
(1)在抛物线上求一点,使点到直线的距离最小;
(2)如图,过点作直线交抛物线于A、B两点.
①若直线AB的倾斜角为,求弦AB的长度;
②若直线AO、BO分别交直线于两点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的左、右焦点分别、,点是椭圆短轴的一个端点,且焦距为6,的周长为16.
(I)求椭圆的方程;
(2)求过点且斜率为的直线被椭圆所截的线段的中点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆 ,若椭圆的右顶点为圆的圆心,离心率为.
(1)求椭圆C的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点.
(1)求椭圆的方程;
(2)直线与椭圆相交于、两点, 为原点,在、上分别存在异于点的点、,使得在以为直径的圆外,求直线斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆以双曲线的实轴为短轴、虚轴为长轴,且与抛物线交于两点.
(1)求椭圆的方程及线段的长;
(2)在与图像的公共区域内,是否存在一点,使得的弦与的弦相互垂直平分于点?若存在,求点坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,椭圆的中心在原点O,右焦点F在x轴上,椭圆与y轴交于A、B两点,其右准线l与x轴交于T点,直线BF交椭圆于C点,P为椭圆上弧AC上的一点.
(1)求证:A、C、T三点共线;
(2)如果=3,四边形APCB的面积最大值为,求此时椭圆的方程和P点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的方程为=1(a>b>0),双曲线=1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1.又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B(如图).
(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;
(2)当=λ,求λ的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线=1的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于A、B两点,F1为左焦点.
(1)求双曲线的方程;
(2)若△F1AB的面积等于6,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com