设椭圆![]()
的左、右焦点分别
、
,点
是椭圆短轴的一个端点,且焦距为6,
的周长为16.
(I)求椭圆
的方程;
(2)求过点
且斜率为
的直线
被椭圆
所截的线段的中点坐标.
科目:高中数学 来源: 题型:解答题
设
:
的准线与
轴交于点
,焦点为
;椭圆
以
为焦点,离心率
.设
是
的一个交点.![]()
(1)当
时,求椭圆
的方程.
(2)在(1)的条件下,直线
过
的右焦点
,与
交于
两点,且
等于
的周长,求
的方程.
(3)求所有正实数
,使得
的边长是连续正整数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为
,点
为抛物线上的一点,其纵坐标为
,
.
(1)求抛物线的方程;
(2)设
为抛物线上不同于
的两点,且
,过
两点分别作抛物线的切线,记两切线的交点为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
的方程为
,离心率为
,且短轴一端点和两焦点构成的三角形面积为1,抛物线
的方程为
,抛物线的焦点F与椭圆的一个顶点重合.
(1)求椭圆
和抛物线
的方程;
(2)过点F的直线交抛物线
于不同两点A,B,交y轴于点N,已知
的值.
(3)直线
交椭圆
于不同两点P,Q,P,Q在x轴上的射影分别为P′,Q′,满足
(O为原点),若点S满足
,判定点S是否在椭圆
上,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆
与直线
相切于点
,与
正半轴交于点
,与直线
在第一象限的交点为
.点
为圆
上任一点,且满足
,动点
的轨迹记为曲线
.![]()
(1)求圆
的方程及曲线
的方程;
(2)若两条直线
和
分别交曲线
于点
、
和
、
,求四边形
面积的最大值,并求此时的
的值.
(3)证明:曲线
为椭圆,并求椭圆
的焦点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
(a>b>0)的上、下顶点分别为A、B,已知点B在直线l:
上,且椭圆的离心率e =
.![]()
(1)求椭圆的标准方程;
(2)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
的内切圆与三边
的切点分别为
,已知
,内切圆圆心
,设点A的轨迹为R. ![]()
(1)求R的方程;
(2)过点C的动直线m交曲线R于不同的两点M,N,问在x轴上是否存在一定点Q(Q不与C重合),使
恒成立,若求出Q点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(1)求椭圆
的方程;
(2)已知
为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中点在原点,焦点在x轴上,离心率等于
,它的一个顶点恰好是抛物线
的焦点.![]()
(1)求椭圆C的方程;
(2)己知点P(2,3),Q(2,-3)在椭圆上,点A、B是椭圆上不同的两个动点,且满足
APQ=
BPQ,试问直线AB的斜率是否为定值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com