设椭圆的左、右焦点分别、,点是椭圆短轴的一个端点,且焦距为6,的周长为16.
(I)求椭圆的方程;
(2)求过点且斜率为的直线被椭圆所截的线段的中点坐标.
科目:高中数学 来源: 题型:解答题
设:的准线与轴交于点,焦点为;椭圆以为焦点,离心率.设是的一个交点.
(1)当时,求椭圆的方程.
(2)在(1)的条件下,直线过的右焦点,与交于两点,且等于的周长,求的方程.
(3)求所有正实数,使得的边长是连续正整数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为,点为抛物线上的一点,其纵坐标为,.
(1)求抛物线的方程;
(2)设为抛物线上不同于的两点,且,过两点分别作抛物线的切线,记两切线的交点为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆的方程为,离心率为,且短轴一端点和两焦点构成的三角形面积为1,抛物线的方程为,抛物线的焦点F与椭圆的一个顶点重合.
(1)求椭圆和抛物线的方程;
(2)过点F的直线交抛物线于不同两点A,B,交y轴于点N,已知的值.
(3)直线交椭圆于不同两点P,Q,P,Q在x轴上的射影分别为P′,Q′,满足(O为原点),若点S满足,判定点S是否在椭圆上,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为.点为圆上任一点,且满足,动点的轨迹记为曲线.
(1)求圆的方程及曲线的方程;
(2)若两条直线和分别交曲线于点、和、,求四边形面积的最大值,并求此时的的值.
(3)证明:曲线为椭圆,并求椭圆的焦点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆 (a>b>0)的上、下顶点分别为A、B,已知点B在直线l:上,且椭圆的离心率e =.
(1)求椭圆的标准方程;
(2)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
的内切圆与三边的切点分别为,已知,内切圆圆心,设点A的轨迹为R.
(1)求R的方程;
(2)过点C的动直线m交曲线R于不同的两点M,N,问在x轴上是否存在一定点Q(Q不与C重合),使恒成立,若求出Q点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).
(1)求椭圆的方程;
(2)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中点在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.
(1)求椭圆C的方程;
(2)己知点P(2,3),Q(2,-3)在椭圆上,点A、B是椭圆上不同的两个动点,且满足APQ=BPQ,试问直线AB的斜率是否为定值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com