精英家教网 > 高中数学 > 题目详情

已知抛物线的焦点为,点为抛物线上的一点,其纵坐标为.
(1)求抛物线的方程;
(2)设为抛物线上不同于的两点,且,过两点分别作抛物线的切线,记两切线的交点为,求的最小值.

(1);(2).

解析试题分析:(1)对于开口向上的抛物线来说,,代入坐标,解出;
(2)设,利用导数的几何意义,利用点斜式方程,分别设出过两点的切线方程,然后求出交点的坐标,结合,所得到的关系式,设,以及的坐标,将点的坐标转化为一个未知量表示的函数,,用未知量表示,转化为函数的最值问题,利用二次函数求最值的方法求出.中档偏难题型.
试题解析:(1)由抛物线定义得:   2分
抛物线方程为   4分
(2)设
   6分
处的切线的斜率为
处的切线方程为
   8分
,由
   10分
时,   12分
考点:1.抛物线的定义;2.导数的几何意义;3.函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴长为,离心率为分别为其左右焦点.一动圆过点,且与直线相切.
(1)(ⅰ)求椭圆的方程;(ⅱ)求动圆圆心轨迹的方程;
(2)在曲线上有四个不同的点,满足共线,共线,且,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平面内一动点到两个定点的距离之和为,线段的长为.

(1)求动点的轨迹
(2)当时,过点作直线与轨迹交于两点,且点在线段的上方,线段的垂直平分线为
①求的面积的最大值;
②轨迹上是否存在除外的两点关于直线对称,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线,直线是抛物线的焦点。

(1)在抛物线上求一点,使点到直线的距离最小;
(2)如图,过点作直线交抛物线于A、B两点.
①若直线AB的倾斜角为,求弦AB的长度;
②若直线AO、BO分别交直线两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理)已知点是平面直角坐标系上的一个动点,点到直线的距离等于点到点的距离的2倍.记动点的轨迹为曲线.
(1)求曲线的方程;
(2)斜率为的直线与曲线交于两个不同点,若直线不过点,设直线的斜率分别为,求的数值;
(3)试问:是否存在一个定圆,与以动点为圆心,以为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,设曲线C1所围成的封闭图形的面积为,曲线C1上的点到原点O的最短距离为.以曲线C1与坐标轴的交点为顶点的椭圆记为C2
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.Ml上的点(与O不重合).
①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
②若Ml与椭圆C2的交点,求△AMB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,

已知椭圆E:的离心率为,过左焦点且斜率为的直线交
椭圆E于A,B两点,线段AB的中点为M,直线交椭圆E于C,D两点.
(1)求椭圆E的方程;
(2)求证:点M在直线上;
(3)是否存在实数,使得四边形AOBC为平行四边形?若存在求出的值,若不存在说明理
由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左、右焦点分别,点是椭圆短轴的一个端点,且焦距为6,的周长为16.
(I)求椭圆的方程;
(2)求过点且斜率为的直线被椭圆所截的线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,椭圆的中心在原点O,右焦点F在x轴上,椭圆与y轴交于A、B两点,其右准线l与x轴交于T点,直线BF交椭圆于C点,P为椭圆上弧AC上的一点.

(1)求证:A、C、T三点共线;
(2)如果=3,四边形APCB的面积最大值为,求此时椭圆的方程和P点坐标.

查看答案和解析>>

同步练习册答案