如图,椭圆
(a>b>0)的上、下顶点分别为A、B,已知点B在直线l:
上,且椭圆的离心率e =
.![]()
(1)求椭圆的标准方程;
(2)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN.
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(a>b>0),过点(0,1),且离心率为
.
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线l:x=2
与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,
恒为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,设曲线C1:
所围成的封闭图形的面积为
,曲线C1上的点到原点O的最短距离为
.以曲线C1与坐标轴的交点为顶点的椭圆记为C2.
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.M是l上的点(与O不重合).
①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
②若M是l与椭圆C2的交点,求△AMB的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆C:
的左顶点为A,M是椭圆C上异于点A的任意一点,点P与点A关于点M对称.![]()
(1)若点P的坐标
,求m的值;
(2)若椭圆C上存在点M,使得
,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆![]()
的左、右焦点分别
、
,点
是椭圆短轴的一个端点,且焦距为6,
的周长为16.
(I)求椭圆
的方程;
(2)求过点
且斜率为
的直线
被椭圆
所截的线段的中点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的离心率为
,右焦点为(
,0).
(1)求椭圆
的方程;
(2)若过原点
作两条互相垂直的射线,与椭圆交于
,
两点,求证:点
到直线
的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
,若椭圆
的右顶点为圆
的圆心,离心率为
.
(1)求椭圆C的方程;
(2)若存在直线
,使得直线
与椭圆
分别交于
两点,与圆
分别交于
两点,点
在线段
上,且
,求圆
的半径
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
以双曲线
的实轴为短轴、虚轴为长轴,且与抛物线
交于
两点.
(1)求椭圆
的方程及线段
的长;
(2)在
与
图像的公共区域内,是否存在一点
,使得
的弦
与
的弦
相互垂直平分于点
?若存在,求点
坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
抛物线y2=2px的准线方程为x=-2,该抛物线上的每个点到准线x=-2的距离都与到定点N的距离相等,圆N是以N为圆心,同时与直线l1:y=x和l2:y=-x相切的圆,
(1)求定点N的坐标;
(2)是否存在一条直线l同时满足下列条件:
①l分别与直线l1和l2交于A、B两点,且AB中点为E(4,1);
②l被圆N截得的弦长为2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com