已知椭圆C:(a>b>0),过点(0,1),且离心率为.
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线l:x=2与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,恒为定值.
(1),(2)1.
解析试题分析:(1)求椭圆标准方程,基本方法为待定系数法.只需两个独立条件确定即可. 由b=1,可解得a=2,故椭圆的方程为,(2)证明椭圆定值问题,实际是以算代征.即需计算出为一个常数.由于点D在x轴上,所以,即只需计算E,F两点纵坐标. 由直线AP: 与直线l:x=2的交点得: ,即,同理可得,因此==1。
试题解析:(1)由题意可知,b=1,
又因为,且a2=b2+c2,解得a=2
所以椭圆的方程为 4
(2)由题意可得:A(﹣2,0),B(2,0).
设P(x0,y0),由题意可得:﹣2<x0<2,
所以直线AP的方程为 6
令,则,即 8
同理:直线BP的方程为,令,则,
即 10
所以
= ..12
而,即4y02=4﹣x02,代入上式,
所以|DE|·|DF|=1,所以|DE|·|DF|为定值1. 14
考点:椭圆标准方程,直线与椭圆位置关系
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,椭圆的离心率为,过椭圆右焦点作两条互相垂直的弦与.当直线斜率为0时,.
(1)求椭圆的方程;
(2)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知双曲线的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆相切,且与双曲线左、右两支的交点分别为.
(1)求k的取值范围,并求的最小值;
(2)记直线的斜率为,直线的斜率为,那么是定值吗?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设:的准线与轴交于点,焦点为;椭圆以为焦点,离心率.设是的一个交点.
(1)当时,求椭圆的方程.
(2)在(1)的条件下,直线过的右焦点,与交于两点,且等于的周长,求的方程.
(3)求所有正实数,使得的边长是连续正整数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.
(1)求抛物线E的方程;
(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆(a>b>0)的离心率为,且过点().
(1)求椭圆E的方程;
(2)设直线l:y=kx+t与圆(1<R<2)相切于点A,且l与椭圆E只有一个公共点B.
①求证:;
②当R为何值时,取得最大值?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面上的动点P(x,y)及两个定点A(-2,0),B(2,0),直线PA,PB的斜率分别为K1,K2且K1K2=-
(1).求动点P的轨迹C方程;
(2).设直线L:y=kx+m与曲线C交于不同两点,M,N,当OM⊥ON时,求O点到直线L的距离(O为坐标原点)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆 (a>b>0)的上、下顶点分别为A、B,已知点B在直线l:上,且椭圆的离心率e =.
(1)求椭圆的标准方程;
(2)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com