已知椭圆(a>b>0)的离心率为,且过点().
(1)求椭圆E的方程;
(2)设直线l:y=kx+t与圆(1<R<2)相切于点A,且l与椭圆E只有一个公共点B.
①求证:;
②当R为何值时,取得最大值?并求出最大值.
(1);(2)①证明见解析;②时,取得最大值为1.
解析试题分析:(1)椭圆的离心率为,又椭圆过已知点,即,再加上,联立可求得;(2)直线与圆及椭圆都相切,因此可以把直线方程与椭圆方程(或圆方程)联立方程组,此方程组只有一解,由此可得到题中参数的关系式,当然直线与圆相切,可利用圆心到直线的距离等于圆的半径来列式,得到的两个等式中消去参数即可证得①式;而②要求的最大值,可先求出,注意到,因此,这里设,由①中的方程(组)可求得,最终把用表示,,利用不等式知识就可求得最大值.
试题解析:(1)椭圆E的方程为 4分
(2)①因为直线与圆C:相切于A,得,
即① 5分
又因为与椭圆E只有一个公共点B,
由得,且此方程有唯一解.
则即
②由①②,得 8分
②设,由得
由韦达定理,
∵点在椭圆上,∴
∴ 10分
在直角三角形OAB中,
∴ 12分
考点:椭圆的标准方程,直线与圆相切,直线与椭圆相切.
科目:高中数学 来源: 题型:解答题
给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的左、右焦点分别为,其上顶点为已知是边长为的正三角形.
(1)求椭圆的方程;
(2)过点任作一动直线交椭圆于两点,记.若在线段上取一点,使得,当直线运动时,点在某一定直线上运动,求出该定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:(a>b>0),过点(0,1),且离心率为.
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线l:x=2与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,恒为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知平面内一动点到两个定点、的距离之和为,线段的长为.
(1)求动点的轨迹;
(2)当时,过点作直线与轨迹交于、两点,且点在线段的上方,线段的垂直平分线为
①求的面积的最大值;
②轨迹上是否存在除、外的两点、关于直线对称,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点在抛物线上,直线(,且)与抛物线,相交于、两点,直线、分别交直线于点、.
(1)求的值;
(2)若,求直线的方程;
(3)试判断以线段为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线,直线,是抛物线的焦点。
(1)在抛物线上求一点,使点到直线的距离最小;
(2)如图,过点作直线交抛物线于A、B两点.
①若直线AB的倾斜角为,求弦AB的长度;
②若直线AO、BO分别交直线于两点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,设曲线C1:所围成的封闭图形的面积为,曲线C1上的点到原点O的最短距离为.以曲线C1与坐标轴的交点为顶点的椭圆记为C2.
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.M是l上的点(与O不重合).
①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
②若M是l与椭圆C2的交点,求△AMB的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆 ,若椭圆的右顶点为圆的圆心,离心率为.
(1)求椭圆C的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com