精英家教网 > 高中数学 > 题目详情

如图,椭圆E:=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.

(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

(1)=1(2)存在定点M(1,0),

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,设曲线C1所围成的封闭图形的面积为,曲线C1上的点到原点O的最短距离为.以曲线C1与坐标轴的交点为顶点的椭圆记为C2
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.Ml上的点(与O不重合).
①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
②若Ml与椭圆C2的交点,求△AMB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆 ,若椭圆的右顶点为圆的圆心,离心率为
(1)求椭圆C的方程;
(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆以双曲线的实轴为短轴、虚轴为长轴,且与抛物线交于两点.
(1)求椭圆的方程及线段的长;
(2)在图像的公共区域内,是否存在一点,使得的弦的弦相互垂直平分于点?若存在,求点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,椭圆的中心在原点O,右焦点F在x轴上,椭圆与y轴交于A、B两点,其右准线l与x轴交于T点,直线BF交椭圆于C点,P为椭圆上弧AC上的一点.

(1)求证:A、C、T三点共线;
(2)如果=3,四边形APCB的面积最大值为,求此时椭圆的方程和P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,M、N分别是椭圆=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.

(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的方程为=1(a>b>0),双曲线=1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1.又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B(如图).

(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;
(2)当=λ,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线y2=2px的准线方程为x=-2,该抛物线上的每个点到准线x=-2的距离都与到定点N的距离相等,圆N是以N为圆心,同时与直线l1:y=x和l2:y=-x相切的圆,
(1)求定点N的坐标;
(2)是否存在一条直线l同时满足下列条件:
①l分别与直线l1和l2交于A、B两点,且AB中点为E(4,1);
②l被圆N截得的弦长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若=2·,求椭圆的方程.

查看答案和解析>>

同步练习册答案