如图,在平面直角坐标系xOy中,已知椭圆
=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.![]()
(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设x1=2,x2=
,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
科目:高中数学 来源: 题型:解答题
如图,![]()
已知椭圆E:
的离心率为
,过左焦点
且斜率为
的直线交
椭圆E于A,B两点,线段AB的中点为M,直线
:
交椭圆E于C,D两点.
(1)求椭圆E的方程;
(2)求证:点M在直线
上;
(3)是否存在实数
,使得四边形AOBC为平行四边形?若存在求出
的值,若不存在说明理
由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的焦点在
轴上,离心率为
,对称轴为坐标轴,且经过点
.
(1)求椭圆
的方程;
(2)直线
与椭圆
相交于
、
两点,
为原点,在
、
上分别存在异于
点的点
、
,使得
在以
为直径的圆外,求直线斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,椭圆的中心在原点O,右焦点F在x轴上,椭圆与y轴交于A、B两点,其右准线l与x轴交于T点,直线BF交椭圆于C点,P为椭圆上弧AC上的一点.![]()
(1)求证:A、C、T三点共线;
(2)如果
=3
,四边形APCB的面积最大值为
,求此时椭圆的方程和P点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设A1、A2与B分别是椭圆E:
=1(a>b>0)的左、右顶点与上顶点,直线A2B与圆C:x2+y2=1相切.
(1)求证:
=1;
(2)P是椭圆E上异于A1、A2的一点,若直线PA1、PA2的斜率之积为-
,求椭圆E的方程;
(3)直线l与椭圆E交于M、N两点,且
·
=0,试判断直线l与圆C的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的方程为
=1(a>b>0),双曲线
=1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1.又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B(如图).![]()
(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;
(2)当
=λ
,求λ的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆C:
=1(a>b>0),称圆心在原点O、半径是
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
,0),其短轴的一个端点到点F的距离为
.
(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B、D是椭圆C上的两相异点,且BD⊥x轴,求
·
的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知过曲线
上任意一点
作直线
的垂线,垂足为
,且
.
⑴求曲线
的方程;
⑵设
、
是曲线
上两个不同点,直线
和
的倾斜角分别为
和
,
当
变化且
为定值
时,证明直线
恒过定点,
并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,若
,且
.
(1)求动点
的轨迹
的方程;
(2)已知定点
,若斜率为
的直线
过点
并与轨迹
交于不同的两点
,且对于轨迹
上任意一点
,都存在
,使得
成立,试求出满足条件的实数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com