精英家教网 > 高中数学 > 题目详情

设A1、A2与B分别是椭圆E:=1(a>b>0)的左、右顶点与上顶点,直线A2B与圆C:x2+y2=1相切.
(1)求证:=1;
(2)P是椭圆E上异于A1、A2的一点,若直线PA1、PA2的斜率之积为-,求椭圆E的方程;
(3)直线l与椭圆E交于M、N两点,且·=0,试判断直线l与圆C的位置关系,并说明理由.

(1)见解析(2)=1.(3)直线l与圆C相切

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率,长轴的左右端点分别为.
(1)求椭圆的方程;
(2)设动直线与曲线有且只有一个公共点,且与直线相交于点.
求证:以为直径的圆过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知焦点在轴上的椭圆经过点,直线
交椭圆于不同的两点.

(1)求该椭圆的标准方程;
(2)求实数的取值范围;
(3)是否存在实数,使△是以为直角的直角三角形,若存在,求出的值,若不存,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知是椭圆上不同的三点,在第三象限,线段的中点在直线上.

(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点在椭圆上(异于点)且直线PBPC分别交直线OA两点,证明为定值并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的右焦点为F(4m,0)(m>0,m为常数),离心率等于0.8,过焦点F、倾斜角为θ的直线l交椭圆C于M、N两点.

(1)求椭圆C的标准方程;
(2)若θ=90°,,求实数m;
(3)试问的值是否与θ的大小无关,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设x1=2,x2,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线D的顶点是椭圆C:=1的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线D的方程;
(2)过椭圆C右顶点A的直线l交抛物线D于M、N两点.
①若直线l的斜率为1,求MN的长;
②是否存在垂直于x轴的直线m被以MA为直径的圆E所截得的弦长为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆=1(a>b>0)的离心率e=,连结椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(-a,0).若|AB|=,求直线l的倾斜角.

查看答案和解析>>

同步练习册答案