精英家教网 > 高中数学 > 题目详情

已知抛物线D的顶点是椭圆C:=1的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线D的方程;
(2)过椭圆C右顶点A的直线l交抛物线D于M、N两点.
①若直线l的斜率为1,求MN的长;
②是否存在垂直于x轴的直线m被以MA为直径的圆E所截得的弦长为定值?如果存在,求出m的方程;如果不存在,说明理由.

(1)y2=4x(2)①②存在直线m:x=3满足题意

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是椭圆上两点,点的坐标为.
(1)当关于点对称时,求证:
(2)当直线经过点时,求证:不可能为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,椭圆的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设为坐标原点,点分别在椭圆上,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设A1、A2与B分别是椭圆E:=1(a>b>0)的左、右顶点与上顶点,直线A2B与圆C:x2+y2=1相切.
(1)求证:=1;
(2)P是椭圆E上异于A1、A2的一点,若直线PA1、PA2的斜率之积为-,求椭圆E的方程;
(3)直线l与椭圆E交于M、N两点,且·=0,试判断直线l与圆C的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定椭圆C:=1(a>b>0),称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(,0),其短轴的一个端点到点F的距离为.
(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B、D是椭圆C上的两相异点,且BD⊥x轴,求·的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线2x-y-4=0上,求抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆,经过椭圆的右焦点F及上顶点B,过圆外一点倾斜角为的直线交椭圆于C,D两点,

(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(1)求曲线Γ的方程;
(2)当点P在第一象限,且时,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知梯形ABCD中|AB|=2|CD|,点E满足=λ,双曲线过C、D、E三点,且以A、B为焦点.当≤λ≤时,求双曲线离心率e的取值范围.

查看答案和解析>>

同步练习册答案