精英家教网 > 高中数学 > 题目详情

如图,已知圆,经过椭圆的右焦点F及上顶点B,过圆外一点倾斜角为的直线交椭圆于C,D两点,

(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.

(1);(2)

解析试题分析:(1)因为右焦点和上顶点在圆上,代入圆的方程,得,进而求得,从而确定椭圆的方程;(1)涉及直线和圆锥曲线的位置关系问题,往往会用到结合根与系数的关系,利用“设而不求”的技巧,确定参数的值或范围.该题中,设直线的方程,并和椭圆方程联立,得关于的一元二次方程,并注意隐函条件,设交点,构造向量,由题意得,,得关于的不等式,解不等式即得参数的取值范围.
试题解析:(1)∵圆G:经过点F、B.∴F(2,0),B(0,),∴.∴.故椭圆的方程为
(2)设直线的方程为
消去
,则,                      7分


==
∵点F在圆G的外部,∴
,解得.由△=,解得.又,∴
考点:1、椭圆的标准方程;2、直线和椭圆的位置关系;3、点和圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知焦点在轴上的椭圆经过点,直线
交椭圆于不同的两点.

(1)求该椭圆的标准方程;
(2)求实数的取值范围;
(3)是否存在实数,使△是以为直角的直角三角形,若存在,求出的值,若不存,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线D的顶点是椭圆C:=1的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线D的方程;
(2)过椭圆C右顶点A的直线l交抛物线D于M、N两点.
①若直线l的斜率为1,求MN的长;
②是否存在垂直于x轴的直线m被以MA为直径的圆E所截得的弦长为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,直线为平面上的动点,过点的垂线,垂足为点,且
(1)求动点的轨迹曲线的方程;
(2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设A、B分别为椭圆=1(a>b>0)的左、右顶点,椭圆长半轴的长等于焦距,且直线x=4是它的右准线.
(1)求椭圆的方程;
(2)设P为椭圆右准线上不同于点(4,0)的任意一点,若直线BP与椭圆相交于两点B、N,求证:∠NAP为锐角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆=1(a>b>0)的离心率e=,连结椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(-a,0).若|AB|=,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A,B分别是椭圆C1:+=1的左、右顶点,P是椭圆上异于A,B的任意一点,Q是双曲线C2:-=1上异于A,B的任意一点,a>b>0.
(1)若P(,),Q(,1),求椭圆C1的方程;
(2)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1·k2+k3·k4为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线=1(a>0,b>0)的两条渐近线方程为y=±x,若顶点到渐近线的距离为1,求双曲线方程.

查看答案和解析>>

同步练习册答案