精英家教网 > 高中数学 > 题目详情

已知双曲线=1(a>0,b>0)的两条渐近线方程为y=±x,若顶点到渐近线的距离为1,求双曲线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点
(1)求椭圆的方程;
(2)直线与椭圆相交于两点, 为原点,在上分别存在异于点的点,使得在以为直径的圆外,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定椭圆C:=1(a>b>0),称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(,0),其短轴的一个端点到点F的距离为.
(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B、D是椭圆C上的两相异点,且BD⊥x轴,求·的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知过曲线上任意一点作直线的垂线,垂足为,且.
⑴求曲线的方程;
⑵设是曲线上两个不同点,直线的倾斜角分别为
变化且为定值时,证明直线恒过定点,
并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆,经过椭圆的右焦点F及上顶点B,过圆外一点倾斜角为的直线交椭圆于C,D两点,

(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线=1的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于A、B两点,F1为左焦点.
(1)求双曲线的方程;
(2)若△F1AB的面积等于6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,若,且.
(1)求动点的轨迹的方程;
(2)已知定点,若斜率为的直线过点并与轨迹交于不同的两点,且对于轨迹上任意一点,都存在,使得成立,试求出满足条件的实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求·的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,已知F1,F2分别是椭圆E:=1(a>b>0)的左、右焦点,A,B分别是椭圆E的左、右顶点,且+5=0.
 
(1)求椭圆E的离心率; (2)已知点D(1,0)为线段OF2的中点,M为椭圆E上的动点(异于点A、B),连结MF1并延长交椭圆E于点N,连结MD、ND并分别延长交椭圆E于点P、Q,连结PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案