给定椭圆C:
=1(a>b>0),称圆心在原点O、半径是
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
,0),其短轴的一个端点到点F的距离为
.
(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B、D是椭圆C上的两相异点,且BD⊥x轴,求
·
的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.
科目:高中数学 来源: 题型:解答题
如图,圆
与直线
相切于点
,与
正半轴交于点
,与直线
在第一象限的交点为
.点
为圆
上任一点,且满足
,动点
的轨迹记为曲线
.![]()
(1)求圆
的方程及曲线
的方程;
(2)若两条直线
和
分别交曲线
于点
、
和
、
,求四边形
面积的最大值,并求此时的
的值.
(3)证明:曲线
为椭圆,并求椭圆
的焦点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,已知
,
,
是椭圆
上不同的三点,
,
,
在第三象限,线段
的中点在直线
上.![]()
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点
在椭圆上(异于点
,
,
)且直线PB,PC分别交直线OA于
,
两点,证明
为定值并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,已知椭圆
=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.![]()
(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设x1=2,x2=
,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线D的顶点是椭圆C:
=1的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线D的方程;
(2)过椭圆C右顶点A的直线l交抛物线D于M、N两点.
①若直线l的斜率为1,求MN的长;
②是否存在垂直于x轴的直线m被以MA为直径的圆E所截得的弦长为定值?如果存在,求出m的方程;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中点在原点,焦点在x轴上,离心率等于
,它的一个顶点恰好是抛物线
的焦点.![]()
(1)求椭圆C的方程;
(2)己知点P(2,3),Q(2,-3)在椭圆上,点A、B是椭圆上不同的两个动点,且满足
APQ=
BPQ,试问直线AB的斜率是否为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=
,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正方形CDEF内接于椭圆
,且它的四条边与坐标轴平行,正方形GHPQ的顶点G,H在椭圆上,顶点P,Q在正方形的边EF上.且CD=2PQ=
.![]()
(1)求椭圆的方程;
(2)已知点M(2,1),平行于OM的直线l在y轴上的截距为m(m:≠0),l交椭圆于A,B两个不同点,求证:直线MA,MB与x轴始终围成一个等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com